Advertisement

The EFT Approach and Its Validity

  • Enrico MorganteEmail author
Chapter
  • 203 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Given the plethora of particle physics model beyond the SM providing a WIMP candidate, it is highly desirable to study the signatures of this DM candidate in a model-independent way. In this and the following chapters, we are going to analyse the two main tools for such a model independent study, namely effective operators and simplified models.

References

  1. 1.
    M. Beltran, D. Hooper, E.W. Kolb, Z.A. Krusberg, T.M. Tait, Maverick dark matter at colliders. JHEP 1009, 037 (2010), arXiv:1002.4137
  2. 2.
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M. Tait et al., Constraints on light Majorana dark matter from colliders. Phys. Lett. B 695, 185–188 (2011), arXiv:1005.1286
  3. 3.
    Y. Bai, P.J. Fox, R. Harnik, The tevatron at the frontier of dark matter direct detection. JHEP 1012, 048 (2010), arXiv:1005.3797
  4. 4.
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M. Tait et al., Constraints on dark matter from colliders. Phys. Rev. D 82, 116010 (2010), arXiv:1008.1783
  5. 5.
    P.J. Fox, R. Harnik, J. Kopp, Y. Tsai, LEP shines light on dark matter. Phys. Rev. D 84, 014028 (2011), arXiv:1103.0240
  6. 6.
    A. Rajaraman, W. Shepherd, T.M. Tait, A.M. Wijangco, LHC bounds on interactions of dark matter. Phys. Rev. D 84, 095013 (2011), arXiv:1108.1196
  7. 7.
    P.J. Fox, R. Harnik, J. Kopp, Y. Tsai, Missing energy signatures of dark matter at the LHC. Phys. Rev. D 85, 056011 (2012), arXiv:1109.4398
  8. 8.
    I.M. Shoemaker, L. Vecchi, Unitarity and Monojet bounds on models for DAMA, CoGeNT, and CRESST-II. Phys. Rev. D 86, 015023 (2012), arXiv:1112.5457
  9. 9.
    H. An, X. Ji, L.-T. Wang, Light dark matter and \(Z^{\prime }\) dark force at colliders. JHEP 07, 182 (2012), arXiv:1202.2894
  10. 10.
    R. Cotta, J. Hewett, M. Le, T. Rizzo, Bounds on dark matter interactions with electroweak gauge bosons. Phys. Rev. D 88, 116009 (2013), arXiv:1210.0525
  11. 11.
    H. Dreiner, M. Huck, M. Krämer, D. Schmeier, J. Tattersall, Illuminating dark matter at the ILC. Phys. Rev. D 87(7), 075015 (2013), arXiv:1211.2254
  12. 12.
    Y.J. Chae, M. Perelstein, Dark matter search at a linear collider: effective operator approach. JHEP 1305, 138 (2013), arXiv:1211.4008
  13. 13.
    P.J. Fox, C. Williams, Next-to-leading order predictions for dark matter production at Hadron colliders. Phys. Rev. D 87, 054030 (2013), arXiv:1211.6390
  14. 14.
    A. De Simone, A. Monin, A. Thamm, A. Urbano, On the effective operators for dark matter annihilations. JCAP 1302, 039 (2013), arXiv:1301.1486
  15. 15.
    H. Dreiner, D. Schmeier, J. Tattersall, Contact interactions probe effective dark matter models at the LHC. Europhys. Lett. 102, 51001 (2013), arXiv:1303.3348
  16. 16.
    J.-Y. Chen, E.W. Kolb, L.-T. Wang, Dark matter coupling to electroweak gauge and Higgs bosons: an effective field theory approach, Phys. Dark Univ. 2, 200–218, (2013), arXiv:1305.0021
  17. 17.
    Q.-H. Cao, C.-R. Chen, C.S. Li, H. Zhang, Effective dark matter model: relic density, CDMS II. Fermi LAT and LHC. JHEP 08, 018 (2011), arXiv:0912.4511
  18. 18.
    J. Fan, M. Reece, L.-T. Wang, Non-relativistic effective theory of dark matter direct detection. JCAP 1011, 042 (2010), arXiv:1008.1591
  19. 19.
    G. Busoni, A. De Simone, E. Morgante, A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC. Phys. Lett. B 728, 412–421 (2014), arXiv:1307.2253
  20. 20.
    O. Buchmueller, M.J. Dolan, C. McCabe, Beyond effective field theory for dark matter searches at the LHC. JHEP 1401, 025 (2014), arXiv:1308.6799
  21. 21.
    G. Busoni, A. De Simone, J. Gramling, E. Morgante, A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC, Part II: complete analysis for the s-channel, JCAP 1406, 060 (2014), arXiv:1402.1275
  22. 22.
    A. Berlin, T. Lin, L.-T. Wang, Mono-Higgs detection of dark matter at the LHC. JHEP 06, 078 (2014), arXiv:1402.7074
  23. 23.
    G. Busoni, A. De Simone, T. Jacques, E. Morgante, A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC part III: analysis for the t-channel, JCAP 1409, 022 (2014), arXiv:1405.3101
  24. 24.
    D. Racco, A. Wulzer, F. Zwirner, Robust collider limits on heavy-mediator dark matter. JHEP 05, 009 (2015), arXiv:1502.04701
  25. 25.
    ATLAS Collaboration, Search for New Phenomena in Monojet plus Missing Transverse Momentum Final States using 10fb-1 of pp Collisions at \(\sqrt{s}=8\,TeV\) with the ATLAS detector at the LHC, ATLAS-CONF-2012-147Google Scholar
  26. 26.
    R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone, D.M. Straub, U(2) and minimal flavour violation in supersymmetry. Eur. Phys. J. C 71, 1725 (2011), arXiv:1105.2296
  27. 27.
    R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub, Flavour physics from an approximate \(U(2)^3\) symmetry. JHEP 07, 181 (2012), arXiv:1203.4218
  28. 28.
    N.F. Bell, J.B. Dent, A.J. Galea, T.D. Jacques, L.M. Krauss et al., Searching for dark matter at the LHC with a Mono-Z. Phys. Rev. D 86, 096011 (2012), arXiv:1209.0231
  29. 29.
    ATLAS Collaboration, G. Aad et al., Search for dark matter in events with a Z boson and missing transverse momentum in pp collisions at \(\sqrt{s}=8\,\mathit{TeV}\) with the ATLAS detector, Phys. Rev. D 90(1), 012004 (2014), arXiv:1404.0051
  30. 30.
    S. Chang, R. Edezhath, J. Hutchinson, M. Luty, Effective WIMPs. Phys. Rev. D 89, 015011 (2014), arXiv:1307.8120
  31. 31.
    H. An, L.-T. Wang, H. Zhang, Dark matter with t-channel mediator: a simple step beyond contact interaction, Phys. Rev. D 89(11), 115014 (2014), arXiv:1308.0592
  32. 32.
    Y. Bai, J. Berger, Fermion portal dark matter. JHEP 1311, 171 (2013), arXiv:1308.0612
  33. 33.
    A. DiFranzo, K.I. Nagao, A. Rajaraman, T.M.P. Tait, Simplified models for dark matter interacting with quarks. JHEP 1311, 014 (2013), arXiv:1308.2679
  34. 34.
    M. Papucci, A. Vichi, K.M. Zurek, Monojet versus rest of the world I: t-channel Models, JHEP 1411, 024 (2014), arXiv:1402.2285
  35. 35.
    M. Garny, A. Ibarra, S. Rydbeck, S. Vogl, Majorana Dark Matter with a Coloured Mediator: Collider versus Direct and Indirect Searches, JHEP 1406, 169 (2014), arXiv:1403.4634
  36. 36.
    N.F. Bell, J.B. Dent, T.D. Jacques, T.J. Weiler, W/Z bremsstrahlung as the dominant annihilation channel for dark matter. Phys. Rev. D 83, 013001 (2011), arXiv:1009.2584
  37. 37.
    A. Martin, W. Stirling, R. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189–285 (2009), arXiv:0901.0002
  38. 38.
  39. 39.
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, MadGraph 5: going beyond. JHEP 1106, 128 (2011), arXiv:1106.0522
  40. 40.
    ATLAS Collaboration, G. Aad et al., Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \(\sqrt{s}=\)8 TeV with the ATLAS detector. Eur. Phys. J. C75(7) 299 (2015), arXiv:1502.01518. [Erratum: Eur. Phys. J. C75, no.9, 408 (2015)]
  41. 41.
    D. Abercrombie et al., Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum, arXiv:1507.00966

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Deutsches Elektronen-SynchrotronHamburgGermany

Personalised recommendations