Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 279 Accesses

Abstract

Given the plethora of particle physics model beyond the SM providing a WIMP candidate, it is highly desirable to study the signatures of this DM candidate in a model-independent way. In this and the following chapters, we are going to analyse the two main tools for such a model independent study, namely effective operators and simplified models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Strictly speaking, the EFT approach is reliable in direct and indirect detection if \(m_{\chi }\) is much smaller than the effective scale of the interaction, which in the simplest cases coincides with the scale at which the particle mediating the interaction goes on shell. This happens at \(m_{\chi }\sim M_\mathrm{med}/2\) for s-channel DM annihilation, or for \(m_{\chi }\sim M_\mathrm{med}\) in a \(\chi \)-quark scattering process where the mediator is exchanged in the t-channel.

  2. 2.

    A normalization proportional to the quark mass is common in many models motivated by flavour physics, but in general the coefficient \(\Lambda ^3\) at the denominator can have a different form. For example, if the effective operators come from a Naturalness-motivated new physics theory like Supersymmetry or Composite Higgs Models, assuming a \(U(2)^3\) flavour symmetry [26, 27] the normalization would be

    figure a

    where \(\Lambda \) is an energy scale of the order some TeV related to the Electroweak Symmetry Breaking and \(m_{t,b},\lambda _{t,b}\) are the mass and the Yukawa coupling with the Higgs of the top/bottom quark, depending on whether the quark q is up-like or down-like. In the present work, we will be agnostic about this point, and we’ll keep both the primed and unprimed operators into account on the same footing as all others.

References

  1. M. Beltran, D. Hooper, E.W. Kolb, Z.A. Krusberg, T.M. Tait, Maverick dark matter at colliders. JHEP 1009, 037 (2010), arXiv:1002.4137

  2. J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M. Tait et al., Constraints on light Majorana dark matter from colliders. Phys. Lett. B 695, 185–188 (2011), arXiv:1005.1286

  3. Y. Bai, P.J. Fox, R. Harnik, The tevatron at the frontier of dark matter direct detection. JHEP 1012, 048 (2010), arXiv:1005.3797

  4. J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M. Tait et al., Constraints on dark matter from colliders. Phys. Rev. D 82, 116010 (2010), arXiv:1008.1783

  5. P.J. Fox, R. Harnik, J. Kopp, Y. Tsai, LEP shines light on dark matter. Phys. Rev. D 84, 014028 (2011), arXiv:1103.0240

  6. A. Rajaraman, W. Shepherd, T.M. Tait, A.M. Wijangco, LHC bounds on interactions of dark matter. Phys. Rev. D 84, 095013 (2011), arXiv:1108.1196

  7. P.J. Fox, R. Harnik, J. Kopp, Y. Tsai, Missing energy signatures of dark matter at the LHC. Phys. Rev. D 85, 056011 (2012), arXiv:1109.4398

  8. I.M. Shoemaker, L. Vecchi, Unitarity and Monojet bounds on models for DAMA, CoGeNT, and CRESST-II. Phys. Rev. D 86, 015023 (2012), arXiv:1112.5457

  9. H. An, X. Ji, L.-T. Wang, Light dark matter and \(Z^{\prime }\) dark force at colliders. JHEP 07, 182 (2012), arXiv:1202.2894

  10. R. Cotta, J. Hewett, M. Le, T. Rizzo, Bounds on dark matter interactions with electroweak gauge bosons. Phys. Rev. D 88, 116009 (2013), arXiv:1210.0525

  11. H. Dreiner, M. Huck, M. Krämer, D. Schmeier, J. Tattersall, Illuminating dark matter at the ILC. Phys. Rev. D 87(7), 075015 (2013), arXiv:1211.2254

  12. Y.J. Chae, M. Perelstein, Dark matter search at a linear collider: effective operator approach. JHEP 1305, 138 (2013), arXiv:1211.4008

  13. P.J. Fox, C. Williams, Next-to-leading order predictions for dark matter production at Hadron colliders. Phys. Rev. D 87, 054030 (2013), arXiv:1211.6390

  14. A. De Simone, A. Monin, A. Thamm, A. Urbano, On the effective operators for dark matter annihilations. JCAP 1302, 039 (2013), arXiv:1301.1486

  15. H. Dreiner, D. Schmeier, J. Tattersall, Contact interactions probe effective dark matter models at the LHC. Europhys. Lett. 102, 51001 (2013), arXiv:1303.3348

  16. J.-Y. Chen, E.W. Kolb, L.-T. Wang, Dark matter coupling to electroweak gauge and Higgs bosons: an effective field theory approach, Phys. Dark Univ. 2, 200–218, (2013), arXiv:1305.0021

  17. Q.-H. Cao, C.-R. Chen, C.S. Li, H. Zhang, Effective dark matter model: relic density, CDMS II. Fermi LAT and LHC. JHEP 08, 018 (2011), arXiv:0912.4511

  18. J. Fan, M. Reece, L.-T. Wang, Non-relativistic effective theory of dark matter direct detection. JCAP 1011, 042 (2010), arXiv:1008.1591

  19. G. Busoni, A. De Simone, E. Morgante, A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC. Phys. Lett. B 728, 412–421 (2014), arXiv:1307.2253

  20. O. Buchmueller, M.J. Dolan, C. McCabe, Beyond effective field theory for dark matter searches at the LHC. JHEP 1401, 025 (2014), arXiv:1308.6799

  21. G. Busoni, A. De Simone, J. Gramling, E. Morgante, A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC, Part II: complete analysis for the s-channel, JCAP 1406, 060 (2014), arXiv:1402.1275

  22. A. Berlin, T. Lin, L.-T. Wang, Mono-Higgs detection of dark matter at the LHC. JHEP 06, 078 (2014), arXiv:1402.7074

  23. G. Busoni, A. De Simone, T. Jacques, E. Morgante, A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC part III: analysis for the t-channel, JCAP 1409, 022 (2014), arXiv:1405.3101

  24. D. Racco, A. Wulzer, F. Zwirner, Robust collider limits on heavy-mediator dark matter. JHEP 05, 009 (2015), arXiv:1502.04701

  25. ATLAS Collaboration, Search for New Phenomena in Monojet plus Missing Transverse Momentum Final States using 10fb-1 of pp Collisions at \(\sqrt{s}=8\,TeV\) with the ATLAS detector at the LHC, ATLAS-CONF-2012-147

    Google Scholar 

  26. R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone, D.M. Straub, U(2) and minimal flavour violation in supersymmetry. Eur. Phys. J. C 71, 1725 (2011), arXiv:1105.2296

  27. R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub, Flavour physics from an approximate \(U(2)^3\) symmetry. JHEP 07, 181 (2012), arXiv:1203.4218

  28. N.F. Bell, J.B. Dent, A.J. Galea, T.D. Jacques, L.M. Krauss et al., Searching for dark matter at the LHC with a Mono-Z. Phys. Rev. D 86, 096011 (2012), arXiv:1209.0231

  29. ATLAS Collaboration, G. Aad et al., Search for dark matter in events with a Z boson and missing transverse momentum in pp collisions at \(\sqrt{s}=8\,\mathit{TeV}\) with the ATLAS detector, Phys. Rev. D 90(1), 012004 (2014), arXiv:1404.0051

  30. S. Chang, R. Edezhath, J. Hutchinson, M. Luty, Effective WIMPs. Phys. Rev. D 89, 015011 (2014), arXiv:1307.8120

  31. H. An, L.-T. Wang, H. Zhang, Dark matter with t-channel mediator: a simple step beyond contact interaction, Phys. Rev. D 89(11), 115014 (2014), arXiv:1308.0592

  32. Y. Bai, J. Berger, Fermion portal dark matter. JHEP 1311, 171 (2013), arXiv:1308.0612

  33. A. DiFranzo, K.I. Nagao, A. Rajaraman, T.M.P. Tait, Simplified models for dark matter interacting with quarks. JHEP 1311, 014 (2013), arXiv:1308.2679

  34. M. Papucci, A. Vichi, K.M. Zurek, Monojet versus rest of the world I: t-channel Models, JHEP 1411, 024 (2014), arXiv:1402.2285

  35. M. Garny, A. Ibarra, S. Rydbeck, S. Vogl, Majorana Dark Matter with a Coloured Mediator: Collider versus Direct and Indirect Searches, JHEP 1406, 169 (2014), arXiv:1403.4634

  36. N.F. Bell, J.B. Dent, T.D. Jacques, T.J. Weiler, W/Z bremsstrahlung as the dominant annihilation channel for dark matter. Phys. Rev. D 83, 013001 (2011), arXiv:1009.2584

  37. A. Martin, W. Stirling, R. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189–285 (2009), arXiv:0901.0002

  38. http://mstwpdf.hepforge.org/

  39. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, MadGraph 5: going beyond. JHEP 1106, 128 (2011), arXiv:1106.0522

  40. ATLAS Collaboration, G. Aad et al., Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \(\sqrt{s}=\)8 TeV with the ATLAS detector. Eur. Phys. J. C75(7) 299 (2015), arXiv:1502.01518. [Erratum: Eur. Phys. J. C75, no.9, 408 (2015)]

  41. D. Abercrombie et al., Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum, arXiv:1507.00966

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Morgante .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Morgante, E. (2017). The EFT Approach and Its Validity. In: Aspects of WIMP Dark Matter Searches at Colliders and Other Probes. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-67606-7_6

Download citation

Publish with us

Policies and ethics