Dark Matter Searches at the LHC
Chapter
First Online:
- 205 Downloads
Abstract
The Large Hadron Collider (LHC) is the world’s largest and most powerful particle accelerator, located at CERN. It consists of a 27-km ring of superconducting magnets with a number of accelerating structures to boost the energy of the particles.
References
- 1.R.P. Feynman, Very high-energy collisions of hadrons. Phys. Rev. Lett. 23, 1415–1417 (1969)ADSCrossRefGoogle Scholar
- 2.A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189–285 (2009), arXiv:0901.0002
- 3.C.D.F. Collaboration, T. Affolder et al., Charged jet evolution and the underlying event in \(p\bar{p}\) collisions at 1.8 TeV. Phys. Rev. D 65, 092002 (2002)ADSCrossRefGoogle Scholar
- 4.ATLAS Collaboration, M. Aaboud et al., Search for new phenomena in final states with an energetic jet and large missing transverse momentum in \(pp\) collisions at \(\sqrt{s}=13\) TeV using the ATLAS detector, Phys. Rev. D 94(3), 032005 (2016), arXiv:1604.07773
- 5.ATLAS Collaboration, M. Aaboud et al., Search for new phenomena in events with a photon and missing transverse momentum in \(pp\) collisions at \(\sqrt{s}=13\) TeV with the ATLAS detector, JHEP 06 059 (2016), JHEP 059, 1606 (2016), arXiv:1604.01306
- 6.ATLAS Collaboration, G. Aad et al., Search for Dark Matter in events with a hadronically decaying W or Z boson and missing transverse momentum in \(pp\) collisions at \(\sqrt{s} =\) 8 TeV with the ATLAS detector, Phys. Rev. Lett. 112(4) 041802 (2014), arXiv:1309.4017
- 7.ATLAS Collaboration, Search for Dark Matter produced in association with a hadronically decaying vector boson in \(pp\) collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2015-080Google Scholar
- 8.ATLAS Collaboration, G. Aad et al., Search for Dark Matter in events with heavy quarks and missing transverse momentum in \(pp\) collisions with the ATLAS detector, Eur. Phys. J. C75(2) 92 (2015), arXiv:1410.4031
- 9.ATLAS Collaboration, G. Aad et al., Search for Dark Matter produced in association with a Higgs boson decaying to two bottom quarks in \(pp\) collisions at \(\sqrt{s} = 8\) TeV with the ATLAS detector, Phys. Rev. D93(7), 072007 (2016), arXiv:1510.06218
- 10.ATLAS Collaboration, Search for Dark Matter in association with a Higgs boson decaying to \(b\) -quarks in \(pp\) collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector, ATLAS-CONF-2016-019Google Scholar
- 11.A. Askew, S. Chauhan, B. Penning, W. Shepherd, M. Tripathi, Searching for Dark Matter at hadron colliders. Int. J. Mod. Phys. A 29, 1430041 (2014), arXiv:1406.5662
- 12.M. Cacciari, G.P. Salam, G. Soyez, The anti-k(t) jet clustering algorithm. JHEP 04, 063 (2008), arXiv:0802.1189
- 13.U. Haisch, F. Kahlhoefer, E. Re, QCD effects in mono-jet searches for Dark Matter. JHEP 12, 007 (2013), arXiv:1310.4491
- 14.ATLAS Collaboration, Selection of jets produced in 13TeV proton-proton collisions with the ATLAS detector, ATLAS-CONF-2015-029Google Scholar
- 15.ATLAS Collaboration, G. Aad et al., Characterisation and mitigation of beam-induced backgrounds observed in the ATLAS detector during the 2011 proton-proton run, JINST 8 P07004 (2013), arXiv:1303.0223
- 16.F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz, S. Vogl, Implications of unitarity and gauge invariance for simplified Dark Matter models, JHEP 02, 016 (2016), arXiv:1510.02110. [JHEP02,016(2016)]
- 17.Planck Collaboration, R. Adam et al., Planck 2015 results. I. Overview of products and scientific results, Astron. Astrophys. A1, 594, (2016), arXiv:1502.01582
- 18.W.M.A.P. Collaboration, G. Hinshaw et al., Nine-year wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results. Astrophys. J. Suppl. 208, 19 (2013), arXiv:1212.5226
- 19.O. Buchmueller, M.J. Dolan, S.A. Malik, C. McCabe, Characterising Dark Matter searches at colliders and direct detection experiments: vector mediators, JHEP 037, 1501 (2015), arXiv:1407.8257
- 20.G. Busoni et al., Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of Dark Matter, arXiv:1603.04156
- 21.XENON100 Collaboration, E. Aprile et al., Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data. Phys. Rev. Lett. 111(2), 021301 (2013), arXiv:1301.6620
- 22.LUX Collaboration, D.S. Akerib et al., First spin-dependent WIMP-nucleon cross section limits from the LUX experiment, Phys. Rev. Lett. 116(16), 161302 (2016), arXiv:1602.03489
- 23.PICO Collaboration, C. Amole et al., Dark Matter search results from the PICO-60 CF\(_3\) I bubble chamber, Phys. Rev. D 93(5), 052014 (2016), arXiv:1510.07754
- 24.PICO Collaboration, C. Amole et al., Improved Dark Matter search results from PICO-2L Run 2, Phys. Rev. D93(6), 061101 (2016), arXiv:1601.03729
- 25.M. Beltran, D. Hooper, E.W. Kolb, Z.A. Krusberg, T.M. Tait, Maverick Dark Matter at colliders. JHEP 1009, 037 (2010), arXiv:1002.4137
- 26.J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M. Tait et al., Constraints on Light Majorana Dark Matter from Colliders. Phys. Lett. B 695, 185–188 (2011), arXiv:1005.1286
- 27.Y. Bai, P.J. Fox, R. Harnik, The tevatron at the frontier of Dark Matter direct detection. JHEP 1012, 048 (2010), arXiv:1005.3797
- 28.J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M. Tait et al., Constraints on Dark Matter from colliders. Phys. Rev. D 82, 116010 (2010), arXiv:1008.1783
- 29.P.J. Fox, R. Harnik, J. Kopp, Y. Tsai, LEP shines light on Dark Matter. Phys. Rev. D 84, 014028 (2011), arXiv:1103.0240
- 30.A. Rajaraman, W. Shepherd, T.M. Tait, A.M. Wijangco, LHC bounds on interactions of Dark Matter. Phys. Rev. D 84, 095013 (2011), arXiv:1108.1196
- 31.P.J. Fox, R. Harnik, J. Kopp, Y. Tsai, Missing energy signatures of Dark Matter at the LHC. Phys. Rev. D 85, 056011 (2012), arXiv:1109.4398
- 32.I.M. Shoemaker, L. Vecchi, Unitarity and monojet bounds on models for DAMA, CoGeNT, and CRESST-II. Phys. Rev. D 86, 015023 (2012), arXiv:1112.5457
- 33.H. An, X. Ji, L.-T. Wang, Light Dark Matter and \(Z^{\prime }\) dark force at colliders. JHEP 07, 182 (2012), arXiv:1202.2894
- 34.R. Cotta, J. Hewett, M. Le, T. Rizzo, Bounds on Dark Matter interactions with electroweak gauge bosons. Phys. Rev. D 88, 116009 (2013), arXiv:1210.0525
- 35.H. Dreiner, M. Huck, M. Krämer, D. Schmeier, J. Tattersall, Illuminating Dark Matter at the ILC. Phys. Rev. D 87(7), 075015 (2013), arXiv:1211.2254
- 36.Y.J. Chae, M. Perelstein, Dark Matter search at a linear collider: effective operator approach. JHEP 1305, 138 (2013), arXiv:1211.4008
- 37.P.J. Fox, C. Williams, Next-to-leading order predictions for Dark Matter production at hadron colliders. Phys. Rev. D 87, 054030 (2013), arXiv:1211.6390
- 38.A. De Simone, A. Monin, A. Thamm, A. Urbano, On the effective operators for Dark Matter annihilations. JCAP 1302, 039 (2013), arXiv:1301.1486
- 39.H. Dreiner, D. Schmeier, J. Tattersall, Contact interactions probe effective Dark Matter models at the LHC. Europhys. Lett. 102, 51001 (2013), arXiv:1303.3348
- 40.J.-Y. Chen, E.W. Kolb, L.-T. Wang, Dark Matter coupling to electroweak gauge and Higgs bosons: an effective field theory approach, Phys. Dark. Univ. 2, 200–218 (2013), arXiv:1305.0021
- 41.G. Busoni, A. De Simone, E. Morgante, A. Riotto, On the validity of the effective field theory for Dark Matter searches at the LHC. Phys. Lett. B 728, 412–421 (2014), arXiv:1307.2253
- 42.O. Buchmueller, M.J. Dolan, C. McCabe, Beyond effective field theory for Dark Matter searches at the LHC. JHEP 1401, 025 (2014), arXiv:1308.6799
- 43.G. Busoni, A. De Simone, J. Gramling, E. Morgante, A. Riotto, On the validity of the effective field theory for Dark Matter searches at the LHC, Part II: complete analysis for the s-channel, JCAP 060, 1406 (2014), arXiv:1402.1275
- 44.A. Berlin, T. Lin, L.-T. Wang, Mono-Higgs detection of Dark Matter at the LHC. JHEP 06, 078 (2014), arXiv:1402.7074
- 45.G. Busoni, A. De Simone, T. Jacques, E. Morgante, A. Riotto, On the validity of the effective field theory for Dark Matter searches at the LHC Part III: analysis for the t-channel, JCAP 022, 1409 (2014), arXiv:1405.3101
- 46.D. Racco, A. Wulzer, F. Zwirner, Robust collider limits on heavy-mediator Dark Matter, JHEP 05, 009 (2015), arXiv:1502.04701
- 47.N. Arkani-Hamed, P. Schuster, N. Toro, J. Thaler, L.-T. Wang, B. Knuteson, S. Mrenna, MARMOSET: The Path from LHC Data to the New Standard Model via On-Shell Effective Theories, arXiv:hep-ph/0703088
- 48.J. Alwall, P. Schuster, N. Toro, Simplified models for a first characterization of new physics at the LHC. Phys. Rev. D 79, 075020 (2009), arXiv:0810.3921
- 49.LHC New Physics Working Group Collaboration, D. Alves et al., Simplified models for LHC new physics searches. J. Phys. G39, 105005 (2012), arXiv:1105.2838
- 50.E. Dudas, Y. Mambrini, S. Pokorski, A. Romagnoni, (In)visible Z-prime and Dark Matter. JHEP 08, 014 (2009),arXiv:0904.1745
- 51.J. Goodman, W. Shepherd, LHC bounds on UV-complete models of Dark Matter, arXiv:1111.2359
- 52.M.T. Frandsen, F. Kahlhoefer, A. Preston, S. Sarkar, K. Schmidt-Hoberg, LHC and Tevatron bounds on the Dark Matter direct detection cross-section for vector mediators. JHEP 07, 123 (2012), arXiv:1204.3839
- 53.R.C. Cotta, A. Rajaraman, T.M.P. Tait, A.M. Wijangco, Particle physics implications and constraints on Dark Matter interpretations of the CDMS signal. Phys. Rev. D 90(1), 013020 (2014), arXiv:1305.6609
- 54.P. Bechtle, T. Plehn, C. Sander, Supersymmetry, in The Large Hadron Collider: Harvest of Run 1, ed. by T. Schörner-Sadenius (2015), pp. 421–462, arXiv:1506.03091
- 55.N. Arkani-Hamed, G.L. Kane, J. Thaler, L.-T. Wang, Supersymmetry and the LHC inverse problem. JHEP 08, 070 (2006), arXiv:hep-ph/0512190
Copyright information
© Springer International Publishing AG 2017