Advertisement

Dark Matter Searches at the LHC

  • Enrico MorganteEmail author
Chapter
  • 205 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The Large Hadron Collider (LHC) is the world’s largest and most powerful particle accelerator, located at CERN. It consists of a 27-km ring of superconducting magnets with a number of accelerating structures to boost the energy of the particles.

References

  1. 1.
    R.P. Feynman, Very high-energy collisions of hadrons. Phys. Rev. Lett. 23, 1415–1417 (1969)ADSCrossRefGoogle Scholar
  2. 2.
    A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189–285 (2009), arXiv:0901.0002
  3. 3.
    C.D.F. Collaboration, T. Affolder et al., Charged jet evolution and the underlying event in \(p\bar{p}\) collisions at 1.8 TeV. Phys. Rev. D 65, 092002 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    ATLAS Collaboration, M. Aaboud et al., Search for new phenomena in final states with an energetic jet and large missing transverse momentum in \(pp\) collisions at \(\sqrt{s}=13\) TeV using the ATLAS detector, Phys. Rev. D 94(3), 032005 (2016), arXiv:1604.07773
  5. 5.
    ATLAS Collaboration, M. Aaboud et al., Search for new phenomena in events with a photon and missing transverse momentum in \(pp\) collisions at \(\sqrt{s}=13\) TeV with the ATLAS detector, JHEP 06 059 (2016), JHEP 059, 1606 (2016), arXiv:1604.01306
  6. 6.
    ATLAS Collaboration, G. Aad et al., Search for Dark Matter in events with a hadronically decaying W or Z boson and missing transverse momentum in \(pp\) collisions at \(\sqrt{s} =\) 8 TeV with the ATLAS detector, Phys. Rev. Lett. 112(4) 041802 (2014), arXiv:1309.4017
  7. 7.
    ATLAS Collaboration, Search for Dark Matter produced in association with a hadronically decaying vector boson in \(pp\) collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2015-080Google Scholar
  8. 8.
    ATLAS Collaboration, G. Aad et al., Search for Dark Matter in events with heavy quarks and missing transverse momentum in \(pp\) collisions with the ATLAS detector, Eur. Phys. J. C75(2) 92 (2015), arXiv:1410.4031
  9. 9.
    ATLAS Collaboration, G. Aad et al., Search for Dark Matter produced in association with a Higgs boson decaying to two bottom quarks in \(pp\) collisions at \(\sqrt{s} = 8\) TeV with the ATLAS detector, Phys. Rev. D93(7), 072007 (2016), arXiv:1510.06218
  10. 10.
    ATLAS Collaboration, Search for Dark Matter in association with a Higgs boson decaying to \(b\) -quarks in \(pp\) collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector, ATLAS-CONF-2016-019Google Scholar
  11. 11.
    A. Askew, S. Chauhan, B. Penning, W. Shepherd, M. Tripathi, Searching for Dark Matter at hadron colliders. Int. J. Mod. Phys. A 29, 1430041 (2014), arXiv:1406.5662
  12. 12.
    M. Cacciari, G.P. Salam, G. Soyez, The anti-k(t) jet clustering algorithm. JHEP 04, 063 (2008), arXiv:0802.1189
  13. 13.
    U. Haisch, F. Kahlhoefer, E. Re, QCD effects in mono-jet searches for Dark Matter. JHEP 12, 007 (2013), arXiv:1310.4491
  14. 14.
    ATLAS Collaboration, Selection of jets produced in 13TeV proton-proton collisions with the ATLAS detector, ATLAS-CONF-2015-029Google Scholar
  15. 15.
    ATLAS Collaboration, G. Aad et al., Characterisation and mitigation of beam-induced backgrounds observed in the ATLAS detector during the 2011 proton-proton run, JINST 8 P07004 (2013), arXiv:1303.0223
  16. 16.
    F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz, S. Vogl, Implications of unitarity and gauge invariance for simplified Dark Matter models, JHEP 02, 016 (2016), arXiv:1510.02110. [JHEP02,016(2016)]
  17. 17.
    Planck Collaboration, R. Adam et al., Planck 2015 results. I. Overview of products and scientific results, Astron. Astrophys. A1, 594, (2016), arXiv:1502.01582
  18. 18.
    W.M.A.P. Collaboration, G. Hinshaw et al., Nine-year wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results. Astrophys. J. Suppl. 208, 19 (2013), arXiv:1212.5226
  19. 19.
    O. Buchmueller, M.J. Dolan, S.A. Malik, C. McCabe, Characterising Dark Matter searches at colliders and direct detection experiments: vector mediators, JHEP 037, 1501 (2015), arXiv:1407.8257
  20. 20.
    G. Busoni et al., Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of Dark Matter, arXiv:1603.04156
  21. 21.
    XENON100 Collaboration, E. Aprile et al., Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data. Phys. Rev. Lett. 111(2), 021301 (2013), arXiv:1301.6620
  22. 22.
    LUX Collaboration, D.S. Akerib et al., First spin-dependent WIMP-nucleon cross section limits from the LUX experiment, Phys. Rev. Lett. 116(16), 161302 (2016), arXiv:1602.03489
  23. 23.
    PICO Collaboration, C. Amole et al., Dark Matter search results from the PICO-60 CF\(_3\) I bubble chamber, Phys. Rev. D 93(5), 052014 (2016), arXiv:1510.07754
  24. 24.
    PICO Collaboration, C. Amole et al., Improved Dark Matter search results from PICO-2L Run 2, Phys. Rev. D93(6), 061101 (2016), arXiv:1601.03729
  25. 25.
    M. Beltran, D. Hooper, E.W. Kolb, Z.A. Krusberg, T.M. Tait, Maverick Dark Matter at colliders. JHEP 1009, 037 (2010), arXiv:1002.4137
  26. 26.
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M. Tait et al., Constraints on Light Majorana Dark Matter from Colliders. Phys. Lett. B 695, 185–188 (2011), arXiv:1005.1286
  27. 27.
    Y. Bai, P.J. Fox, R. Harnik, The tevatron at the frontier of Dark Matter direct detection. JHEP 1012, 048 (2010), arXiv:1005.3797
  28. 28.
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M. Tait et al., Constraints on Dark Matter from colliders. Phys. Rev. D 82, 116010 (2010), arXiv:1008.1783
  29. 29.
    P.J. Fox, R. Harnik, J. Kopp, Y. Tsai, LEP shines light on Dark Matter. Phys. Rev. D 84, 014028 (2011), arXiv:1103.0240
  30. 30.
    A. Rajaraman, W. Shepherd, T.M. Tait, A.M. Wijangco, LHC bounds on interactions of Dark Matter. Phys. Rev. D 84, 095013 (2011), arXiv:1108.1196
  31. 31.
    P.J. Fox, R. Harnik, J. Kopp, Y. Tsai, Missing energy signatures of Dark Matter at the LHC. Phys. Rev. D 85, 056011 (2012), arXiv:1109.4398
  32. 32.
    I.M. Shoemaker, L. Vecchi, Unitarity and monojet bounds on models for DAMA, CoGeNT, and CRESST-II. Phys. Rev. D 86, 015023 (2012), arXiv:1112.5457
  33. 33.
    H. An, X. Ji, L.-T. Wang, Light Dark Matter and \(Z^{\prime }\) dark force at colliders. JHEP 07, 182 (2012), arXiv:1202.2894
  34. 34.
    R. Cotta, J. Hewett, M. Le, T. Rizzo, Bounds on Dark Matter interactions with electroweak gauge bosons. Phys. Rev. D 88, 116009 (2013), arXiv:1210.0525
  35. 35.
    H. Dreiner, M. Huck, M. Krämer, D. Schmeier, J. Tattersall, Illuminating Dark Matter at the ILC. Phys. Rev. D 87(7), 075015 (2013), arXiv:1211.2254
  36. 36.
    Y.J. Chae, M. Perelstein, Dark Matter search at a linear collider: effective operator approach. JHEP 1305, 138 (2013), arXiv:1211.4008
  37. 37.
    P.J. Fox, C. Williams, Next-to-leading order predictions for Dark Matter production at hadron colliders. Phys. Rev. D 87, 054030 (2013), arXiv:1211.6390
  38. 38.
    A. De Simone, A. Monin, A. Thamm, A. Urbano, On the effective operators for Dark Matter annihilations. JCAP 1302, 039 (2013), arXiv:1301.1486
  39. 39.
    H. Dreiner, D. Schmeier, J. Tattersall, Contact interactions probe effective Dark Matter models at the LHC. Europhys. Lett. 102, 51001 (2013), arXiv:1303.3348
  40. 40.
    J.-Y. Chen, E.W. Kolb, L.-T. Wang, Dark Matter coupling to electroweak gauge and Higgs bosons: an effective field theory approach, Phys. Dark. Univ. 2, 200–218 (2013), arXiv:1305.0021
  41. 41.
    G. Busoni, A. De Simone, E. Morgante, A. Riotto, On the validity of the effective field theory for Dark Matter searches at the LHC. Phys. Lett. B 728, 412–421 (2014), arXiv:1307.2253
  42. 42.
    O. Buchmueller, M.J. Dolan, C. McCabe, Beyond effective field theory for Dark Matter searches at the LHC. JHEP 1401, 025 (2014), arXiv:1308.6799
  43. 43.
    G. Busoni, A. De Simone, J. Gramling, E. Morgante, A. Riotto, On the validity of the effective field theory for Dark Matter searches at the LHC, Part II: complete analysis for the s-channel, JCAP 060, 1406 (2014), arXiv:1402.1275
  44. 44.
    A. Berlin, T. Lin, L.-T. Wang, Mono-Higgs detection of Dark Matter at the LHC. JHEP 06, 078 (2014), arXiv:1402.7074
  45. 45.
    G. Busoni, A. De Simone, T. Jacques, E. Morgante, A. Riotto, On the validity of the effective field theory for Dark Matter searches at the LHC Part III: analysis for the t-channel, JCAP 022, 1409 (2014), arXiv:1405.3101
  46. 46.
    D. Racco, A. Wulzer, F. Zwirner, Robust collider limits on heavy-mediator Dark Matter, JHEP 05, 009 (2015), arXiv:1502.04701
  47. 47.
    N. Arkani-Hamed, P. Schuster, N. Toro, J. Thaler, L.-T. Wang, B. Knuteson, S. Mrenna, MARMOSET: The Path from LHC Data to the New Standard Model via On-Shell Effective Theories, arXiv:hep-ph/0703088
  48. 48.
    J. Alwall, P. Schuster, N. Toro, Simplified models for a first characterization of new physics at the LHC. Phys. Rev. D 79, 075020 (2009), arXiv:0810.3921
  49. 49.
    LHC New Physics Working Group Collaboration, D. Alves et al., Simplified models for LHC new physics searches. J. Phys. G39, 105005 (2012), arXiv:1105.2838
  50. 50.
    E. Dudas, Y. Mambrini, S. Pokorski, A. Romagnoni, (In)visible Z-prime and Dark Matter. JHEP 08, 014 (2009),arXiv:0904.1745
  51. 51.
    J. Goodman, W. Shepherd, LHC bounds on UV-complete models of Dark Matter, arXiv:1111.2359
  52. 52.
    M.T. Frandsen, F. Kahlhoefer, A. Preston, S. Sarkar, K. Schmidt-Hoberg, LHC and Tevatron bounds on the Dark Matter direct detection cross-section for vector mediators. JHEP 07, 123 (2012), arXiv:1204.3839
  53. 53.
    R.C. Cotta, A. Rajaraman, T.M.P. Tait, A.M. Wijangco, Particle physics implications and constraints on Dark Matter interpretations of the CDMS signal. Phys. Rev. D 90(1), 013020 (2014), arXiv:1305.6609
  54. 54.
    P. Bechtle, T. Plehn, C. Sander, Supersymmetry, in The Large Hadron Collider: Harvest of Run 1, ed. by T. Schörner-Sadenius (2015), pp. 421–462, arXiv:1506.03091
  55. 55.
    N. Arkani-Hamed, G.L. Kane, J. Thaler, L.-T. Wang, Supersymmetry and the LHC inverse problem. JHEP 08, 070 (2006), arXiv:hep-ph/0512190

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Deutsches Elektronen-SynchrotronHamburgGermany

Personalised recommendations