Focus on AMS-02 Anti-protons Results

  • Enrico MorganteEmail author
Part of the Springer Theses book series (Springer Theses)


After the release of the PAMELA data showing a rise in the positron fraction at energies above \(10\mathrm{GeV}\), interest rose around the measurement of the antiproton fraction \(\bar{p}/p\). Indeed, DM annihilation could lead to a similar signal in antiprotons, where the degeneracy with a pulsar explanation is not present, since antiprotons are too heavy to be produced by pulsars’ magnetic fields.


  1. 1.
    M. Cirelli, Indirect searches for dark matter: a status review. Pramana 79, 1021–1043 (2012), arXiv:1202.1454
  2. 2.
    A. De Simone, A. Riotto, W. Xue, Interpretation of AMS-02 results: correlations among dark matter signals, JCAP 1305, 003 (2013), arXiv:1304.1336
  3. 3.
    N. Fornengo, L. Maccione, A. Vittino, Constraints on particle dark matter from cosmic-ray antiprotons, JCAP 1404(04), 003 (2014), arXiv:1312.3579
  4. 4.
    P. Ciafaloni, D. Comelli, A. Riotto, F. Sala, A. Strumia, A. Urbano, Weak corrections are relevant for dark matter indirect detection, JCAP 1103, 019 (2011), arXiv:1009.0224
  5. 5.
    V. Pettorino, G. Busoni, A. De Simone, E. Morgante, A. Riotto, W. Xue, Can AMS-02 discriminate the origin of an anti-proton signal?, JCAP 1410(10), 078 (2014), arXiv:1406.5377
  6. 6.
    A. Kounine, Talk at AMS days at CERN, 2015,
  7. 7.
    P. Blasi, The origin of the positron excess in cosmic rays, Phys. Rev. Lett. 103 051104, (2009), arXiv:0903.2794
  8. 8.
    P. Blasi, P.D. Serpico, High-energy antiprotons from old supernova remnants. Phys. Rev. Lett. 103, 081103 (2009), arXiv:0904.0871
  9. 9.
    M. Kachelriess, S. Ostapchenko, R. Tomas, Antimatter production in supernova remnants, Astrophys. J. 733, 119 (2011), arXiv:1103.5765
  10. 10.
    L.C. Tan, L.K. Ng, Parametrization of anti-p invariant cross-section in p p collisions using a new scaling variable. Phys. Rev. D26, 1179–1182 (1982)Google Scholar
  11. 11.
    L.C. Tan, L.K. Ng, Calculation of the equilibrium anti-proton spectrum. J. Phys. G9, 227–242 (1983)Google Scholar
  12. 12.
    T. Bringmann, P. Salati, The galactic antiproton spectrum at high energies: Background expectation vs. exotic contributions, Phys. Rev. D75, 083006 (2007), arXiv:0612514
  13. 13.
    C. Evoli, I. Cholis, D. Grasso, L. Maccione, P. Ullio, Antiprotons from dark matter annihilation in the Galaxy: astrophysical uncertainties, Phys. Rev. D85 123511(2012), arXiv:1108.0664
  14. 14.
    C. Evoli, D. Gaggero, D. Grasso, L. Maccione, Cosmic-ray nuclei, antiprotons and gamma-rays in the galaxy: a new diffusion model, JCAP 0810, 018 (2008), arXiv:0807.4730. [Erratum: JCAP1604,no.04,E01(2016)]
  15. 15.
    M. Cirelli, G. Giesen, Antiprotons from dark matter: current constraints and future sensitivities, JCAP 1304, 015(2013), arXiv:1301.7079
  16. 16.
    PAMELA Collaboration, O. Adriani et al., PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy, Phys. Rev. Lett. 105, 121101(2010), arXiv:1007.0821
  17. 17.
    PAMELA Collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV, Nature 458, 607–609(2009), arXiv:0810.4995
  18. 18.
    A.M.S. Collaboration, M. Aguilar et al., First result from the alpha magnetic spectrometer on the international space station: precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys. Rev. Lett. 110, 141102 (2013)CrossRefGoogle Scholar
  19. 19.
    Fermi-LAT Collaboration, M. Ackermann et al., Dark matter constraints from observations of 25 milky way satellite galaxies with the fermi large area telescope, Phys. Rev. D89, 042001(2014), arXiv:1310.0828
  20. 20.
    Fermi-LAT Collaboration, M. Ackermann et al., Constraints on the galactic halo dark matter from fermi-lat diffuse measurements, Astrophys. J. 761, 91(2012). arXiv:1205.6474
  21. 21.
    S. Ting, Slides of the talk at spacepart12, 5–7 november 2012, CERN. Scholar
  22. 22.
    M. Pato, D. Hooper, M. Simet, Pinpointing cosmic ray propagation with the AMS-02 experiment, JCAP 1006, 022(2010), arXiv:1002.3341
  23. 23.
    I. Cholis, D. Hooper, Constraining the origin of the rising cosmic ray positron fraction with the boron-to-carbon ratio, Phys. Rev. D89(4), 043013 (2014), arXiv:1312.2952
  24. 24.
    AMS Collaboration, M. Aguilar et al., Antiproton flux, antiproton-to-proton flux ratio, and properties of elementary particle fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station, Phys. Rev. Lett. 117(9), 091103 (2016)Google Scholar
  25. 25.
    G. Giesen, M. Boudaud, Y.Génolini, V. Poulin, M. Cirelli, P. Salati, P.D. Serpico, AMS-02 antiprotons, at last! Secondary astrophysical component and immediate implications for dark matter, JCAP 1509(09), 023 (2015), arXiv:1504.04276
  26. 26.
    C. Evoli, D. Gaggero, D. Grasso, Secondary antiprotons as a galactic dark matter probe, JCAP 1512(12), 039(2015), arXiv:1504.05175
  27. 27.
    R. Kappl, A. Reinert, M.W. Winkler, AMS-02 antiprotons reloaded, JCAP 1510(10), 034 (2015), arXiv:1506.04145
  28. 28.
    A. Cuoco, M. Krämer, M. Korsmeier, Novel dark matter constraints from antiprotons in light of AMS-02, Phys. Rev. Lett. 118(19), 191102 (2017), arXiv:1610.03071
  29. 29.
    M.-Y. Cui, Q. Yuan, Y.-L. S. Tsai, Y.-Z. Fan, Possible dark matter annihilation signal in the AMS-02 antiproton data, Phys. Rev. Lett. 118(19), 191101 (2017), arXiv:1610.03840
  30. 30.
    A. Cuoco, J. Heisig, M. Korsmeier, M. Krämer, Probing dark matter annihilation in the galaxy with antiprotons and gamma rays, arXiv:1704.08258

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Deutsches Elektronen-SynchrotronHamburgGermany

Personalised recommendations