Advertisement

Introduction to Dark Matter

  • Enrico MorganteEmail author
Chapter
  • 212 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The history of our understanding of dark matter is long and fascinating. It is not easy to indicate a precise starting point for these studies, since the question about the amount of low-luminosity material in the Milky Way was asked numerous times already in the 19th century.

Keywords

Dark Matter Minimal Supersymmetric Extension Of The Standard Model (MSSM) Sterile Neutrinos Primordial Black Holes Massive Compact Halo Objects 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110–127 (1933)ADSzbMATHGoogle Scholar
  2. 2.
    G. Bertone, D. Hooper, A History of Dark Matter, arXiv:1605.04909
  3. 3.
    K.G. Begeman, A.H. Broeils, R.H. Sanders, Extended rotation curves of spiral galaxies: dark haloes and modified dynamics. Mon. Not. Roy. Astron. Soc. 249, 523 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    K.C. Freeman, On the disks of spiral and SO galaxies. Astrophys. J. 160, 811 (1970)ADSCrossRefGoogle Scholar
  5. 5.
    J. Einasto, A. Kaasik, E. Saar, Dynamic evidence on massive coronas of galaxies, Nature 250, 309–310 (1974)Google Scholar
  6. 6.
    J.P. Ostriker, P.J.E. Peebles, A. Yahil, The size and mass of galaxies, and the mass of the universe, Astrophys. J. Lett. 193, L1–L4 (1974)Google Scholar
  7. 7.
    P.M.W. Kalberla, L. Dedes, J. Kerp, U. Haud, Dark matter in the Milky Way, II. the HI gas distribution as a tracer of the gravitational potential. Astron. Astrophys. 469, 511–527 (2007), arXiv:0704.3925
  8. 8.
    J. Fan, A. Katz, L. Randall, M. Reece, Double-Disk Dark Matter. Phys. Dark Univ. 2, 139–156 (2013), arXiv:1303.1521
  9. 9.
    J. Fan, A. Katz, L. Randall, M. Reece, Dark-Disk Universe. Phys. Rev. Lett. 110(21) 211302 (2013), arXiv:1303.3271
  10. 10.
    L. Randall, M. Reece, Dark Matter as a Trigger for Periodic Comet Impacts. Phys. Rev. Lett. 112, 161301 (2014), arXiv:1403.0576
  11. 11.
    N.J. Shaviv, The Paleoclimatic evidence for Strongly Interacting Dark Matter Present in the Galactic Disk, arXiv:1606.02851
  12. 12.
    D. Clowe, M. Bradac, A.H. Gonzalez, M. Markevitch, S.W. Randall, C. Jones, D. Zaritsky, A direct empirical proof of the existence of dark matter. Astrophys. J. 648, L109–L113 (2006), arXiv:astro-ph/0608407
  13. 13.
    M. Markevitch, A.H. Gonzalez, L. David, A. Vikhlinin, S. Murray, W. Forman, C. Jones, W. Tucker, A Textbook example of a bow shock in the merging galaxy cluster 1E0657-56. Astrophys. J. 567, L27 (2002), arXiv:astro-ph/0110468
  14. 14.
    D. Clowe, A. Gonzalez, M. Markevitch, Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter. Astrophys. J. 604, 596–603 (2004), arXiv:astro-ph/0312273
  15. 15.
    S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez, M. Bradac, Constraints on the Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657–56. Astrophys. J. 679, 1173–1180 (2008), arXiv:0704.0261
  16. 16.
    M.J. Jee et al., Discovery of a ringlike dark matter structure in the core of the galaxy cluster Cl 0024\(+\)17. Astrophys. J. 661, 728–749 (2007), arXiv:0705.2171
  17. 17.
    A. Mahdavi, H.y. Hoekstra, A.y. Babul, D.y. Balam, P. Capak, A Dark Core in Abell 520. Astrophys. J. 668, 806–814 (2007), arXiv:0706.3048
  18. 18.
    M. Bradac̆, S.W. Allen, T. Treu, H. Ebeling, R. Massey, R.G. Morris, A. von der Linden, D. Applegate, Revealing the properties of dark matter in the merging cluster MACSJ0025.4-1222, Astrophys. J. 687 959 (2008), arXiv:0806.2320
  19. 19.
    R. Massey, T. Kitching, J. Richard, The dark matter of gravitational lensing. Rept. Prog. Phys. 73, 086901 (2010), arXiv:1001.1739
  20. 20.
    2DFGRS Collaboration, M. Colless et al., The 2dF Galaxy Redshift Survey: Spectra and redshifts, Mon. Not. Roy. Astron. Soc. 328 (2001) 1039, arXiv:astro-ph/0106498
  21. 21.
    S.D.S.S. Collaboration, M. Tegmark et al., The 3-D power spectrum of galaxies from the SDSS. Astrophys. J. 606, 702–740 (2004), arXiv:astro-ph/0310725
  22. 22.
    V. Springel et al., Simulating the joint evolution of quasars, galaxies and their large-scale distribution. Nature 435, 629–636 (2005), arXiv:astro-ph/0504097
  23. 23.
    N. Menci, A. Grazian, M. Castellano, N.G. Sanchez, A Stringent Limit on the Warm Dark Matter Particle Masses from the Abundance of z\(=\)6 Galaxies in the Hubble Frontier Fields, Astrophys. J. 825(1) L1 (2016), arXiv:1606.02530
  24. 24.
    Planck Collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594, A13 (2016), arXiv:1502.01589
  25. 25.
    S. Dodelson, Modern Cosmology (Academic Press, Amsterdam, 2003)Google Scholar
  26. 26.
    J. Lesgourgues, Cosmological Perturbations, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: Searching for New Physics at Small and Large Scales (TASI 2012), pp. 29–97, 2013, arXiv:1302.4640
  27. 27.
    P. Gondolo, G. Gelmini, Cosmic abundances of stable particles: Improved analysis. Nucl. Phys. B 360, 145–179 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    K. Griest, D. Seckel, Three exceptions in the calculation of relic abundances. Phys. Rev. D 43, 3191–3203 (1991)Google Scholar
  29. 29.
    P. Ciafaloni, D. Comelli, A. De Simone, E. Morgante, A. Riotto, A. Urbano, The Role of Electroweak Corrections for the Dark Matter Relic Abundance. JCAP 1310, 031 (2013), arXiv:1305.6391
  30. 30.
    S. Profumo, Astrophysical Probes of Dark Matter, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: Searching for New Physics at Small and Large Scales (TASI 2012), pp. 143–189, 2013, arXiv:1301.0952
  31. 31.
    B.W. Lee, S. Weinberg, Cosmological lower bound on heavy neutrino masses. Phys. Rev. Lett. 39, 165–168 (1977)ADSCrossRefGoogle Scholar
  32. 32.
    K. Griest, M. Kamionkowski, Unitarity limits on the mass and radius of dark matter particles. Phys. Rev. Lett. 64, 615 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    J.L. Feng, A. Rajaraman, F. Takayama, Superweakly interacting massive particles. Phys. Rev. Lett. 91, 011302 (2003), arXiv:hep-ph/0302215
  34. 34.
    J.L. Feng, A. Rajaraman, F. Takayama, SuperWIMP dark matter signals from the early universe. Phys. Rev. D68, 063504 (2003), arXiv:hep-ph/0306024
  35. 35.
    J. McDonald, Thermally generated gauge singlet scalars as selfinteracting dark matter. Phys. Rev. Lett. 88, 091304 (2002), arXiv:hep-ph/0106249
  36. 36.
    L.J. Hall, K. Jedamzik, J. March-Russell, S.M. West, Freeze-In Production of FIMP Dark Matter. JHEP 03, 080 (2010), arXiv:0911.1120
  37. 37.
    D.J.H. Chung, E.W. Kolb, A. Riotto, Superheavy dark matter. Phys. Rev. D59, 023501 (1999), arXiv:hep-ph/9802238
  38. 38.
    D.J.H. Chung, E.W. Kolb, A. Riotto, Nonthermal supermassive dark matter. Phys. Rev. Lett. 81, 4048–4051 (1998), arXiv:hep-ph/9805473
  39. 39.
    E.W. Kolb, D.J.H. Chung, A. Riotto, WIMPzillas!, in Trends in theoretical physics II. Proceedings, 2nd La Plata Meeting, Buenos Aires, Argentina, November 29-December 4, 1998, pp. 91–105, 1998, arXiv:hep-ph/9810361
  40. 40.
    D.J.H. Chung, E.W. Kolb, A. Riotto, Production of massive particles during reheating. Phys. Rev. D 60, 063504 (1999), arXiv:hep-ph/9809453
  41. 41.
    A.D. Sakharov, Violation of CP Invariance, c Asymmetry, and Baryon Asymmetry of the Universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32–35. [Usp. Fiz. Nauk 161, 61(1991)]Google Scholar
  42. 42.
    S. Nussinov, Technocosmology: could a technibaryon excess provide a ’natural’ missing mass candidate? Phys. Lett. B 165, 55–58 (1985)Google Scholar
  43. 43.
    G.B. Gelmini, L.J. Hall, M.J. Lin, What is the cosmion? Nucl. Phys. B281, 726 (1987)Google Scholar
  44. 44.
    D.B. Kaplan, A single explanation for both the baryon and dark matter densities. Phys. Rev. Lett. 68, 741–743 (1992)ADSCrossRefGoogle Scholar
  45. 45.
    D.N. Spergel, W.H. Press, Effect of hypothetical, weakly interacting, massive particles on energy transport in the solar interior. Astrophys. J. 294, 663–673 (1985)ADSCrossRefGoogle Scholar
  46. 46.
    K.M. Zurek, Asymmetric Dark Matter: Theories, Signatures, and Constraints. Phys. Rept. 537, 91–121 (2014), arXiv:1308.0338
  47. 47.
    Y. Bai, P. Schwaller, Scale of dark QCD. Phys. Rev. D89(6) 063522 (2014), arXiv:1306.4676
  48. 48.
    K. Murase, I.M. Shoemaker, Detecting Asymmetric Dark Matter in the Sun with Neutrinos, Phys. Rev. D94(6) 063512 (2016), arXiv:1606.03087
  49. 49.
    G. Gelmini, P. Gondolo, DM Production Mechanisms in *Bertone, G. (ed.): Particle dark matter* pp. 99–117, arXiv:1009.3690
  50. 50.
    K. Griest, Galactic microlensing as a method of detecting massive compact halo objects. Astrophys. J. 366, 412–421 (1991)ADSCrossRefGoogle Scholar
  51. 51.
    MACHO Collaboration, C. Alcock et al., The MACHO project: Microlensing results from 5.7 years of LMC observations, Astrophys. J. 542 281–307 (2000), arXiv:astro-ph/0001272
  52. 52.
    EROS-2 Collaboration, P. Tisserand et al., Limits on the macho content of the galactic halo from the EROS-2 survey of the magellanic clouds, astron. Astrophys. 469 387–404 (2007), arXiv:astro-ph/0607207
  53. 53.
    S. Calchi Novati, L. Mancini, G. Scarpetta, L. Wyrzykowski, LMC self lensing for OGLE-II microlensing observations. Mon. Not. Roy. Astron. Soc. 400, 1625 (2009), arXiv:0908.3836
  54. 54.
    L. Wyrzykowski et al., The OGLE View of Microlensing towards the Magellanic Clouds. I. A Trickle of Events in the OGLE-II LMC data. Mon. Not. Roy. Astron. Soc. 397, 1228–1242 (2009), arXiv:0905.2044
  55. 55.
    POINT-AGAPE Collaboration, S. Calchi Novati et al., POINT-AGAPE pixel lensing survey of M31: Evidence for a MACHO contribution to galactic halos, Astron. Astrophys. 443, 911 (2005), arXiv:astro-ph/0504188
  56. 56.
    B.J. Carr, S.W. Hawking, Black holes in the early Universe. Mon. Not. Roy. Astron. Soc. 168, 399–415 (1974)ADSCrossRefGoogle Scholar
  57. 57.
    P. Meszaros, The behaviour of point masses in an expanding cosmological substratum. Astron. Astrophys. 37, 225–228 (1974)ADSGoogle Scholar
  58. 58.
    B.J. Carr, The Primordial black hole mass spectrum. Astrophys. J. 201, 1–19 (1975)ADSCrossRefGoogle Scholar
  59. 59.
    S. Clesse, J. García-Bellido, Massive Primordial Black Holes from Hybrid Inflation as Dark Matter and the seeds of Galaxies. Phys. Rev. D92(2) 023524 (2015), arXiv:1501.07565
  60. 60.
    S.W. Hawking, Black hole explosions. Nature 248, 30–31 (1974)ADSCrossRefzbMATHGoogle Scholar
  61. 61.
    D.N. Page, S.W. Hawking, Gamma rays from primordial black holes. Astrophys. J. 206, 1–7 (1976)ADSCrossRefGoogle Scholar
  62. 62.
    EGRET Collaboration, P. Sreekumar et al., EGRET observations of the extragalactic gamma-ray emission, Astrophys. J. 494 523–534 (1998), arXiv:astro-ph/9709257
  63. 63.
    B.J. Carr, K. Kohri, Y. Sendouda, J. Yokoyama, New cosmological constraints on primordial black holes. Phys. Rev. D81, 104019 (2010), arXiv:0912.5297
  64. 64.
    F. Capela, M. Pshirkov, P. Tinyakov, Constraints on primordial black holes as dark matter candidates from star formation. Phys. Rev. D87(2) 023507 (2013), arXiv:1209.6021
  65. 65.
    F. Capela, M. Pshirkov, P. Tinyakov, Constraints on primordial black holes as dark matter candidates from capture by neutron stars. Phys. Rev. D87(12) 123524 (2013), arXiv:1301.4984
  66. 66.
    A. Gould, Astrophys. J. 386, L5 (1992)Google Scholar
  67. 67.
    A. Ulmer, J. Goodman, Femtolensing: Beyond the semiclassical approximation. Astrophys. J. 442, 67 (1995), arXiv:astro-ph/9406042
  68. 68.
    A. Barnacka, J.F. Glicenstein, R. Moderski, New constraints on primordial black holes abundance from femtolensing of gamma-ray bursts. Phys. Rev. D86, 043001 (2012), arXiv:1204.2056
  69. 69.
    K. Griest, A.M. Cieplak, M.J. Lehner, Experimental Limits on Primordial Black Hole Dark Matter from the First 2 yr of Kepler Data, Astrophys. J. 786(2), 158 (2014), arXiv:1307.5798
  70. 70.
    M. Ricotti, J.P. Ostriker, K.J. Mack, Effect of primordial black holes on the cosmic microwave background and cosmological parameter estimates. Astrophys. J. 680, 829 (2008), arXiv:0709.0524
  71. 71.
    M.A. Monroy-Rodríguez, C. Allen, The end of the MACHO era- revisited: new limits on MACHO masses from halo wide binaries, Astrophys. J. 790(2), 159 (2014), arXiv:1406.5169
  72. 72.
    C.G. Lacey, J.P. Ostriker, Massive black holes in galactic halos?, Astrophys. J. 299, 633–652 (1985)Google Scholar
  73. 73.
    Virgo, LIGO Scientific Collaboration, B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6) 061102 (2016), arXiv:1602.03837
  74. 74.
    S. Bird, I. Cholis, J.B. Muñoz, Y. Ali-Haïmoud, M. Kamionkowski, E.D. Kovetz, A. Raccanelli, A.G. Riess, Did LIGO detect dark matter?. Phys. Rev. Lett. 116(20) 201301 (2016), arXiv:1603.00464
  75. 75.
    M. Sasaki, T. Suyama, T. Tanaka, S. Yokoyama, Primordial black hole scenario for the gravitational wave event GW150914. Phys. Rev. Lett. 117(6) 061101 (2016), arXiv:1603.08338
  76. 76.
    T.D. Brandt, Constraints on MACHO Dark Matter from Compact Stellar Systems in Ultra-Faint Dwarf Galaxies, Astrophys. J. 824(2) L31 (2016), arXiv:1605.03665
  77. 77.
    J.B. Muñoz, E.D. Kovetz, L. Dai, M. Kamionkowski, Lensing of fast radio bursts as a probe of compact dark matter. Phys. Rev. Lett. 117(9) 091301 (2016), arXiv:1605.00008
  78. 78.
    G.F. Giudice, M. McCullough, A. Urbano, Hunting for Dark Particles with Gravitational Waves. JCAP 1610(10) 001 (2016), arXiv:1605.01209
  79. 79.
    Troitsk Collaboration, V.N. Aseev et al., An upper limit on electron antineutrino mass from Troitsk experiment. Phys. Rev. D84 112003 (2011), arXiv:1108.5034
  80. 80.
    G. Bertone, D. Hooper, J. Silk, Particle dark matter: Evidence, candidates and constraints. Phys. Rept. 405, 279–390 (2005), arXiv:hep-ph/0404175
  81. 81.
    P.W. Graham, D.E. Kaplan, S. Rajendran, Cosmological Relaxation of the Electroweak Scale. Phys. Rev. Lett. 115(22), 221801(2015), arXiv:1504.07551
  82. 82.
    H.E. Haber, G.L. Kane, The search for supersymmetry: probing physics beyond the standard model. Phys. Rept. 117, 75–263 (1985)ADSCrossRefGoogle Scholar
  83. 83.
    S. Dimopoulos, H. Georgi, Softly broken supersymmetry and SU(5). Nucl. Phys. B193, 150–162 (1981)Google Scholar
  84. 84.
    T. Kaluza, On the Problem of Unity in Physics, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1921 966–972 (1921)Google Scholar
  85. 85.
    O. Klein, Quantum Theory and Five-Dimensional Theory of Relativity. (In German and English), Z. Phys. 37, 895–906 (1926). [Surveys High Energ. Phys.5,241(1986)]Google Scholar
  86. 86.
    N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, The Hierarchy problem and new dimensions at a millimeter. Phys. Lett. B429 263–272 (1998), arXiv:hep-ph/9803315
  87. 87.
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV. Phys. Lett. B436, 257–263 (1998), arXiv:hep-ph/9804398
  88. 88.
    N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, J. March-Russell, Neutrino masses from large extra dimensions. Phys. Rev. D65, 024032 (2002), arXiv:hep-ph/9811448
  89. 89.
    N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity. Phys. Rev. D59, 086004 (1999), arXiv:hep-ph/9807344
  90. 90.
    N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, N. Kaloper, Infinitely large new dimensions. Phys. Rev. Lett. 84, 586–589 (2000), arXiv:hep-th/9907209
  91. 91.
    L. Randall, R. Sundrum, A Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370–3373 (1999), arXiv:hep-ph/9905221
  92. 92.
    L. Randall, R. Sundrum, An Alternative to compactification. Phys. Rev. Lett. 83, 4690–4693 (1999), arXiv:hep-th/9906064
  93. 93.
    E.W. Kolb, R. Slansky, Dimensional reduction in the early universe: where have the massive particles gone? Phys. Lett. B 135, 378 (1984)ADSCrossRefGoogle Scholar
  94. 94.
    E.W. Kolb, M.S. Turner, The Early Universe. Front. Phys. 69, 1–547 (1990)Google Scholar
  95. 95.
    T. Appelquist, H.-C. Cheng, B.A. Dobrescu, Bounds on universal extra dimensions. Phys. Rev. D64, 035002 (2001), arXiv:hep-ph/0012100
  96. 96.
    G. Servant, T.M.P. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate? Nucl. Phys. B650, 391–419 (2003), arXiv:hep-ph/0206071
  97. 97.
    M. Cirelli, N. Fornengo, A. Strumia, Minimal dark matter. Nucl. Phys. B753, 178–194 (2006), arXiv:hep-ph/0512090
  98. 98.
    M. Cirelli, A. Strumia, M. Tamburini, Cosmology and Astrophysics of Minimal Dark Matter. Nucl. Phys. B787, 152–175 (2007), arXiv:0706.4071
  99. 99.
    M. Cirelli, R. Franceschini, A. Strumia, Minimal Dark Matter predictions for galactic positrons, anti-protons, photons. Nucl. Phys. B800, 204–220 (2008), arXiv:0802.3378
  100. 100.
    M. Cirelli, A. Strumia, Minimal Dark Matter predictions and the PAMELA positron excess, PoS IDM2008 (2008) 089, arXiv:0808.3867
  101. 101.
    M. Cirelli, A. Strumia, Minimal Dark Matter: Model and results. New J. Phys. 11, 105005 (2009), arXiv:0903.3381
  102. 102.
    M. Cirelli, F. Sala, M. Taoso, Wino-like Minimal Dark Matter and future colliders. JHEP 10, 033 (2014), arXiv:1407.7058. [Erratum: JHEP01,041(2015)]
  103. 103.
    M. Cirelli, T. Hambye, P. Panci, F. Sala, M. Taoso, Gamma ray tests of Minimal Dark Matter, JCAP 1510(10), 026 (2015), arXiv:1507.05519
  104. 104.
    M. Shaposhnikov, Sterile neutrinos, in In *Bertone, G. (ed.): Particle dark matter* 228-248, 2010Google Scholar
  105. 105.
    R.D. Peccei, H.R. Quinn, CP Conservation in the presence of instantons. Phys. Rev. Lett. 38, 1440–1443 (1977)ADSCrossRefGoogle Scholar
  106. 106.
    R.D. Peccei, H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons. Phys. Rev. D16, 1791–1797 (1977)Google Scholar
  107. 107.
    S.L. Adler, Axial vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426–2438 (1969)ADSCrossRefGoogle Scholar
  108. 108.
    J.S. Bell, R. Jackiw, A PCAC puzzle: pi0 -> gamma gamma in the sigma model. Nuovo Cim. A60, 47–61 (1969)Google Scholar
  109. 109.
    K.A. Olive et al., Review of Particle Physics. Chin. Phys. C38, 090001 (2014)Google Scholar
  110. 110.
    D.J.E. Marsh, Axion Cosmology. Phys. Rept. 643, 1–79 (2016), arXiv:1510.07633
  111. 111.
    M. Milgrom, A Modification of the newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365–370 (1983)Google Scholar
  112. 112.
    J. Bekenstein, M. Milgrom, Does the missing mass problem signal the breakdown of Newtonian gravity? Astrophys. J. 286, 7–14 (1984)Google Scholar
  113. 113.
    J.D. Bekenstein, Relativistic gravitation theory for the MOND paradigm. Phys. Rev. D70, 083509 (2004), arXiv:astro-ph/0403694. [Erratum: Phys. Rev. D71, 069901 (2005)]
  114. 114.
    J.D. Bekenstein, Alternatives to Dark Matter: Modified Gravity as an Alternative to dark Matter in *Bertone, G. (ed.): Particle dark matter* pp. 99–117, arXiv:1001.3876
  115. 115.
    J. Silk et al., in *Bertone, G. (ed.): Particle dark matter* (2010)Google Scholar
  116. 116.
    S. Dodelson, The real problem with MOND. Int. J. Mod. Phys. D20, 2749–2753 (2011), arXiv:1112.1320

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Deutsches Elektronen-SynchrotronHamburgGermany

Personalised recommendations