Skip to main content

Role and Fate of TCTP in Protein Degradative Pathways

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 64))

Abstract

This chapter focuses on published studies specifically concerning TCTP and its involvement in degradation or stabilization of various proteins, and also in its own degradation in different ways. The first part relates to the inhibition of proteasomal degradation of proteins. This can be achieved by masking ubiquitination sites of specific partners, by favoring ubiquitin E3 ligase degradation, or by regulating proteasome activity. The second part addresses the ability of TCTP to favor degradation of specific proteins through proteasome or macroautophagic pathways. The third part discusses about the different ways by which TCTP has been shown to be degraded.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Bre5:

Brefeldin A sensitivity 5

CMA:

Chaperone-mediated autophagy

DHA:

Dihydroartemisinin

HIF1α:

Hypoxia-inducible factor 1α

HRF:

Histamine releasing factor

Hsp27:

Heat shock protein 27

Mcl-1:

Myeloid cell leukemia 1

Mdm2:

Murine double minute 2

Mmi1:

Microtubule and mitochondria interacting protein

Mss4:

Mammalian suppressor of yeast Sec4

Mst-1:

Mammalian sterile twenty-1

NTHK1:

Tobacco histidine kinase-1

Pim-3:

Serine/threonine-protein kinase Pim-3

PRX1:

Peroxiredoxin-1

Rpn:

26S proteasome regulatory subunit

Rpt:

Proteasome regulatory particle base subunit

UPS:

Ubiquitin–proteasome system

TCTP:

Translationally controlled tumor protein

Ubp3:

ubiquitin specific protease 3

VHL:

von Hippel–Lindau protein

References

  • Amson R, Pece S, Lespagnol A, Vyas R, Mazzarol G, Tosoni D et al (2012) Reciprocal repression between P53 and TCTP. Nat Med 18(1):91–99

    Article  CAS  Google Scholar 

  • Amzallag N, Passer BJ, Allanic D, Segura E, Thery C, Goud B et al (2004) TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway. J Biol Chem 279(44):46104–46112

    Article  CAS  PubMed  Google Scholar 

  • Baudet C, Perret E, Delpech B, Kaghad M, Brachet P, Wion D et al (1998) Differentially expressed genes in C6.9 glioma cells during vitamin D-induced cell death program. Cell Death Differ 5(1):116–125

    Article  CAS  PubMed  Google Scholar 

  • Baylot V, Katsogiannou M, Andrieu C, Taieb D, Acunzo J, Giusiano S et al (2012) Targeting TCTP as a new therapeutic strategy in castration-resistant prostate cancer. Mol Ther 20(12):2244–2256. Epub 2012/08/16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazile F, Pascal A, Arnal I, Le Clainche C, Chesnel F, Kubiak JZ (2009) Complex relationship between TCTP, microtubules and actin microfilaments regulates cell shape in normal and cancer cells. Carcinogenesis 30(4):555–565. Epub 2009/01/27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bommer UA, Borovjagin AV, Greagg MA, Jeffrey IW, Russell P, Laing KG et al (2002) The mRNA of the translationally controlled tumor protein P23/TCTP is a highly structured RNA, which activates the dsRNA-dependent protein kinase PKR. RNA 8(4):478–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bommer UA, Heng C, Perrin A, Dash P, Lobov S, Elia A et al (2010) Roles of the translationally controlled tumour protein (TCTP) and the double-stranded RNA-dependent protein kinase, PKR, in cellular stress responses. Oncogene 29(5):763–773

    Article  CAS  PubMed  Google Scholar 

  • Bommer UA, Iadevaia V, Chen J, Knoch B, Engel M, Proud CG (2015) Growth-factor dependent expression of the translationally controlled tumour protein TCTP is regulated through the PI3-K/Akt/mTORC1 signalling pathway. Cell Signal 27(8):1557–1568. Epub 2015/05/06

    Article  CAS  PubMed  Google Scholar 

  • Bonhoure A, Vallentin A, Martin M, Senff-Ribeiro A, Amson A, Telerman A et al (2017) Acetylation of translationally controlled tumor protein promotes its degradation through chaperone-mediated autophagy. Eur. J. Cell Biol. 96: 83–98

    Google Scholar 

  • Burgess A, Labbe JC, Vigneron S, Bonneaud N, Strub JM, Van Dorsselaer A et al (2008) Chfr interacts and colocalizes with TCTP to the mitotic spindle. Oncogene 27(42):5554–5566

    Article  CAS  PubMed  Google Scholar 

  • Chan TH, Chen L, Liu M, Hu L, Zheng BJ, Poon VK et al (2012) Translationally controlled tumor protein induces mitotic defects and chromosome missegregation in hepatocellular carcinoma development. Hepatology 55(2):491–505. Epub 2011/09/29

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay A, Pinkaew D, Doan HQ, Jacob RB, Verma SK, Friedman H et al (2016) Fortilin potentiates the peroxidase activity of Peroxiredoxin-1 and protects against alcohol-induced liver damage in mice. Sci Rep 6:18701. Epub 2016/01/05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CS, Wang YC, Yang HC, Huang PH, Kulp SK, Yang CC et al (2007a) Histone deacetylase inhibitors sensitize prostate cancer cells to agents that produce DNA double-strand breaks by targeting Ku70 acetylation. Cancer Res 67(11):5318–5327. Epub 2007/06/05

    Article  CAS  PubMed  Google Scholar 

  • Chen SH, Wu PS, Chou CH, Yan YT, Liu H, Weng SY et al (2007b) A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue- or cell type-specific manner. Mol Biol Cell 18(7):2525–2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Chen S, Huang C, Cheng H, Zhou R (2013) TCTP increases stability of hypoxia-inducible factor 1alpha by interaction with and degradation of the tumour suppressor VHL. Biol Cell 105(5):208–218. Epub 2013/02/08

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Huang C, Yuan J, Cheng H, Zhou R (2014) Long-term artificial selection reveals a role of TCTP in autophagy in mammalian cells. Mol Biol Evol 31(8):2194–2211. Epub 2014/06/04

    Article  CAS  PubMed  Google Scholar 

  • Cohen M, Stutz F, Belgareh N, Haguenauer-Tsapis R, Dargemont C (2003) Ubp3 requires a cofactor, Bre5, to specifically de-ubiquitinate the COPII protein, Sec23. Nat Cell Biol 5(7):661–667

    Article  CAS  PubMed  Google Scholar 

  • Colaluca IN, Tosoni D, Nuciforo P, Senic-Matuglia F, Galimberti V, Viale G et al (2008) NUMB controls p53 tumour suppressor activity. Nature 451(7174):76–80

    Article  CAS  PubMed  Google Scholar 

  • Cucchi U, Gianellini LM, De Ponti A, Sola F, Alzani R, Patton V et al (2010) Phosphorylation of TCTP as a marker for polo-like kinase-1 activity in vivo. Anticancer Res 30(12):4973–4985

    CAS  PubMed  Google Scholar 

  • Cuervo AM, Dice JF (2000) Unique properties of lamp2a compared to other lamp2 isoforms. J Cell Sci 113(Pt 24):4441–4450

    CAS  PubMed  Google Scholar 

  • Diraison F, Hayward K, Sanders KL, Brozzi F, Lajus S, Hancock J et al (2011) Translationally controlled tumour protein (TCTP) is a novel glucose-regulated protein that is important for survival of pancreatic beta cells. Diabetologia 54(2):368–379. Epub 2010/11/11

    Article  CAS  PubMed  Google Scholar 

  • Fujita T, Felix K, Pinkaew D, Hutadilok-Towatana N, Liu Z, Fujise K (2008) Human fortilin is a molecular target of dihydroartemisinin. FEBS Lett 582(7):1055–1060. Epub 2008/03/08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gachet Y, Tournier S, Lee M, Lazaris-Karatzas A, Poulton T, Bommer UA (1999) The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J Cell Sci 112(Pt 8):1257–1271

    CAS  PubMed  Google Scholar 

  • Gnanasekar M, Dakshinamoorthy G, Ramaswamy K (2009) Translationally controlled tumor protein is a novel heat shock protein with chaperone-like activity. Biochem Biophys Res Commun 386(2):333–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graidist P, Phongdara A, Fujise K (2004) Antiapoptotic protein partners fortilin and MCL1 independently protect cells from 5-fluorouracil-induced cytotoxicity. J Biol Chem 279(39):40868–40875

    Article  CAS  PubMed  Google Scholar 

  • Guerrero C, Milenkovic T, Przulj N, Kaiser P, Huang L (2008) Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc Natl Acad Sci USA 105(36):13333–13338. Epub 2008/09/02

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong ST, Choi KW (2013) TCTP directly regulates ATM activity to control genome stability and organ development in Drosophila melanogaster. Nat Commun 4:2986. Epub 2013/12/20

    Article  PubMed  Google Scholar 

  • Hsu YC, Chern JJ, Cai Y, Liu M, Choi KW (2007) Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 445(7129):785–788

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Ge CM, Meng QH, Cao JP, Tong J, Fan SJ (2007) Dihydroartemisinin is an inhibitor of ovarian cancer cell growth. Acta Pharmacol Sin 28(7):1045–1056. Epub 2007/06/26

    Article  CAS  PubMed  Google Scholar 

  • Kaushik S, Cuervo AM (2012) Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 22(8):407–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le TP, Vuong LT, Kim AR, Hsu YC, Choi KW (2016) 14-3-3 Proteins regulate Tctp-Rheb interaction for organ growth in Drosophila. Nat Commun 7:11501. Epub 2016/05/07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Chen M, Xiong Q, Zhang J, Cui Z, Ge F (2016) Characterization of the translationally controlled tumor protein (TCTP) interactome reveals novel binding partners in human cancer cells. J Proteome Res. Epub 2016/09/09

    Google Scholar 

  • Liu H, Peng HW, Cheng YS, Yuan HS, Yang-Yen HF (2005) Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol Cell Biol 25(8):3117–3126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Wang Y, Gao T, Pan Z, Cheng H, Yang Q et al (2014) CPLM: a database of protein lysine modifications. Nucleic Acids Res 42(Database issue):D531–D536. Epub 2013/11/12

    Article  CAS  PubMed  Google Scholar 

  • Lucibello M, Gambacurta A, Zonfrillo M, Pierimarchi P, Serafino A, Rasi G et al (2011) TCTP is a critical survival factor that protects cancer cells from oxidative stress-induced cell-death. Exp Cell Res 317(17):2479–2489. Epub 2011/08/02

    Article  CAS  PubMed  Google Scholar 

  • MacDonald SM, Rafnar T, Langdon J, Lichtenstein LM (1995) Molecular identification of an IgE-dependent histamine-releasing factor. Science 269(5224):688–690

    Article  CAS  PubMed  Google Scholar 

  • Ohsumi Y (2014) Historical landmarks of autophagy research. Cell Res 24(1):9–23. Epub 2013/12/25

    Article  CAS  PubMed  Google Scholar 

  • Park C, Suh Y, Cuervo AM (2015) Regulated degradation of Chk1 by chaperone-mediated autophagy in response to DNA damage. Nat Commun 6:6823. Epub 2015/04/17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinnerthaler M, Jarolim S, Heeren G, Palle E, Perju S, Klinger H et al (2006) MMI1 (YKL056c, TMA19), the yeast orthologue of the translationally controlled tumor protein (TCTP) has apoptotic functions and interacts with both microtubules and mitochondria. Biochim Biophys Acta 1757(5–6):631–638

    Article  CAS  PubMed  Google Scholar 

  • Rinnerthaler M, Lejskova R, Grousl T, Stradalova V, Heeren G, Richter K et al (2013) Mmi1, the yeast homologue of mammalian TCTP, associates with stress granules in heat-shocked cells and modulates proteasome activity. PLoS One 8(10):e77791. Epub 2013/11/10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocchi P, Jugpal P, So A, Sinneman S, Ettinger S, Fazli L et al (2006) Small interference RNA targeting heat-shock protein 27 inhibits the growth of prostatic cell lines and induces apoptosis via caspase-3 activation in vitro. BJU Int 98(5):1082–1089. Epub 2006/08/02

    Article  CAS  PubMed  Google Scholar 

  • Roque CG, Wong HH, Lin JQ, Holt CE (2016) Tumor protein Tctp regulates axon development in the embryonic visual system. Development 143(7):1134–1148. Epub 2016/02/24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian C, Opipari AW Jr, Bian X, Castle VP, Kwok RP (2005) Ku70 acetylation mediates neuroblastoma cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 102(13):4842–4847. Epub 2005/03/22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Susini L, Besse S, Duflaut D, Lespagnol A, Beekman C, Fiucci G et al (2008) TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death Differ 15(8):1211–1220

    Article  CAS  PubMed  Google Scholar 

  • Tao JJ, Cao YR, Chen HW, Wei W, Li QT, Ma B et al (2015) Tobacco translationally controlled tumor protein interacts with ethylene receptor tobacco histidine kinase1 and enhances plant growth through promotion of cell proliferation. Plant Physiol 169(1):96–114. Epub 2015/05/06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaw P, Baxter NJ, Hounslow AM, Price C, Waltho JP, Craven CJ (2001) Structure of TCTP reveals unexpected relationship with guanine nucleotide-free chaperones. Nat Struct Biol 8(8):701–704

    Article  CAS  PubMed  Google Scholar 

  • Thebault S, Agez M, Chi X, Stojko J, Cura V, Telerman SB et al (2016) TCTP contains a BH3-like domain, which instead of inhibiting, activates Bcl-xL. Sci Rep 6:19725. Epub 2016/01/28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333(1–2):169–174. Epub 1993/10/25

    Article  CAS  PubMed  Google Scholar 

  • Tuynder M, Susini L, Prieur S, Besse S, Fiucci G, Amson R et al (2002) Biological models and genes of tumor reversion: cellular reprogramming through tpt1/TCTP and SIAH-1. Proc Natl Acad Sci USA 99(23):14976–14981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walczak M, Martens S (2013) Dissecting the role of the Atg12-Atg5-Atg16 complex during autophagosome formation. Autophagy 9(3):424–425. Epub 2013/01/17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Yang F, Xiong Z, Yan Y, Wang X, Nishino M et al (2005) An N-terminal region of translationally controlled tumor protein is required for its antiapoptotic activity. Oncogene 24(30):4778–4788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarm FR (2002) Plk phosphorylation regulates the microtubule-stabilizing protein TCTP. Mol Cell Biol 22(17):6209–6221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Li F, Weidner D, Mnjoyan ZH, Fujise K (2002) Physical and functional interaction between myeloid cell leukemia 1 protein (MCL1) and Fortilin. The potential role of MCL1 as a fortilin chaperone. J Biol Chem 277(40):37430–37438. Epub 2002/08/01

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, de Toledo SM, Pandey BN, Guo G, Pain D, Li H et al (2012) Role of the translationally controlled tumor protein in DNA damage sensing and repair. Proc Natl Acad Sci USA 109(16):E926–E933. Epub 2012/03/28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Liu B, Wang Z, Yu XJ, Ni QX, Yang WT et al (2013) A novel regulatory mechanism of Pim-3 kinase stability and its involvement in pancreatic cancer progression. Mol Cancer Res MCR 11(12):1508–1520. Epub 2013/10/30

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the CNRS, the University of Montpellier, and from the Labex LERMIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Vidal .

Editor information

Editors and Affiliations

Ethics declarations

The author declares that he has no conflict of interest with the contents of this chapter.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vidal, M. (2017). Role and Fate of TCTP in Protein Degradative Pathways. In: Telerman, A., Amson, R. (eds) TCTP/tpt1 - Remodeling Signaling from Stem Cell to Disease. Results and Problems in Cell Differentiation, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-319-67591-6_6

Download citation

Publish with us

Policies and ethics