Skip to main content

Structural Insights into TCTP and Its Interactions with Ligands and Proteins

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 64))

Abstract

The 19–24 kDa Translationally Controlled Tumor Protein (TCTP) is involved in a wide range of molecular interactions with biological and nonbiological partners of various chemical compositions such as proteins, peptides, nucleic acids, carbohydrates, or small molecules. TCTP is therefore an important and versatile binding platform. Many of these protein–protein interactions have been validated, albeit only few received an in-depth structural characterization. In this chapter, we will focus on the structural analysis of TCTP and we will review the available literature regarding its interaction network from a structural perspective.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abu Bakar N, Klonis N, Hanssen E, Chan C, Tilley L (2010) Digestive-vacuole genesis and endocytic processes in the early intraerythrocytic stages of Plasmodium falciparum. J Cell Sci 123(Pt 3):441–450

    Article  CAS  PubMed  Google Scholar 

  • Amson R, Pece S, Lespagnol A, Vyas R, Mazzarol G, Tosoni D, Colaluca I, Viale G, Rodrigues-Ferreira S, Wynendaele J, Chaloin O, Hoebeke J, Marine JC, Di Fiore PP, Telerman A (2012) Reciprocal repression between P53 and TCTP. Nat Med 18(1):91–99

    Article  CAS  Google Scholar 

  • Amson R, Pece S, Marine JC, Di Fiore PP, Telerman A (2013) TPT1/TCTP-regulated pathways in phenotypic reprogramming. Trends Cell Biol 23(1):37–46

    Article  CAS  PubMed  Google Scholar 

  • Amzallag N, Passer BJ, Allanic D, Segura E, Thery C, Goud B, Amson R, Telerman A (2004) TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway. J Biol Chem 279(44):46104–46112

    Article  CAS  PubMed  Google Scholar 

  • Arcuri F, Papa S, Carducci A, Romagnoli R, Liberatori S, Riparbelli MG, Sanchez JC, Tosi P, del Vecchio MT (2004) Translationally controlled tumor protein (TCTP) in the human prostate and prostate cancer cells: expression, distribution, and calcium binding activity. Prostate 60(2):130–140

    Article  CAS  PubMed  Google Scholar 

  • Bae HD, Lee K (2013) On employing a translationally controlled tumor protein-derived protein transduction domain analog for transmucosal delivery of drugs. J Control Release 170(3):358–364

    Article  CAS  PubMed  Google Scholar 

  • Bangrak P, Graidist P, Chotigeat W, Phongdara A (2004) Molecular cloning and expression of a mammalian homologue of a translationally controlled tumor protein (TCTP) gene from Penaeus monodon shrimp. J Biotechnol 108(3):219–226

    Article  CAS  PubMed  Google Scholar 

  • Baylot V, Katsogiannou M, Andrieu C, Taieb D, Acunzo J, Giusiano S, Fazli L, Gleave M, Garrido C, Rocchi P (2012) Targeting TCTP as a new therapeutic strategy in castration-resistant prostate cancer. Mol Ther 20(12):2244–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazile F, Pascal A, Arnal I, Le Clainche C, Chesnel F, Kubiak JZ (2009) Complex relationship between TCTP, microtubules and actin microfilaments regulates cell shape in normal and cancer cells. Carcinogenesis 30(4):555–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhisutthibhan J, Meshnick SR (2001) Immunoprecipitation of [(3)H]dihydroartemisinin translationally controlled tumor protein (TCTP) adducts from Plasmodium falciparum-infected erythrocytes by using anti-TCTP antibodies. Antimicrob Agents Chemother 45(8):2397–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhisutthibhan J, Pan XQ, Hossler PA, Walker DJ, Yowell CA, Carlton J, Dame JB, Meshnick SR (1998) The Plasmodium falciparum translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin. J Biol Chem 273(26):16192–16198

    Article  CAS  PubMed  Google Scholar 

  • Bhisutthibhan J, Philbert MA, Fujioka H, Aikawa M, Meshnick SR (1999) The Plasmodium falciparum translationally controlled tumor protein: subcellular localization and calcium binding. Eur J Cell Biol 78(9):665–670

    Article  CAS  PubMed  Google Scholar 

  • Burgess A, Labbe JC, Vigneron S, Bonneaud N, Strub JM, Van Dorsselaer A, Lorca T, Castro A (2008) Chfr interacts and colocalizes with TCTP to the mitotic spindle. Oncogene 27(42):5554–5566

    Article  CAS  PubMed  Google Scholar 

  • Cans C, Passer BJ, Shalak V, Nancy-Portebois V, Crible V, Amzallag N, Allanic D, Tufino R, Argentini M, Moras D, Fiucci G, Goud B, Mirande M, Amson R, Telerman A (2003) Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A. Proc Natl Acad Sci USA 100(24):13892–13897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, Davey NE, Humphreys DT, Preiss T, Steinmetz LM, Krijgsveld J, Hentze MW (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149(6):1393–1406

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay A, Pinkaew D, Doan HQ, Jacob RB, Verma SK, Friedman H, Peterson AC, Kuyumcu-Martinez MN, McDougal OM, Fujise K (2016) Fortilin potentiates the peroxidase activity of Peroxiredoxin-1 and protects against alcohol-induced liver damage in mice. Sci Rep 6:18701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Fujita T, Zhang D, Doan H, Pinkaew D, Liu Z, Wu J, Koide Y, Chiu A, Lin CC, Chang JY, Ruan KH, Fujise K (2011) Physical and functional antagonism between tumor suppressor protein p53 and fortilin, an anti-apoptotic protein. J Biol Chem 286(37):32575–32585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Chen S, Huang C, Cheng H, Zhou R (2013) TCTP increases stability of hypoxia-inducible factor 1alpha by interaction with and degradation of the tumour suppressor VHL. Biol Cell 105(5):208–218

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Huang C, Yuan J, Cheng H, Zhou R (2014) Long-term artificial selection reveals a role of TCTP in autophagy in mammalian cells. Mol Biol Evol 31(8):2194–2211

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Li J, Deng J, Li Z, Meng S, Wang H (2012) Translationally controlled tumor protein (TCTP) downregulates Oct4 expression in mouse pluripotent cells. BMB Rep 45(1):20–25

    Article  CAS  PubMed  Google Scholar 

  • Choi KW, Hsu YC (2007) To cease or to proliferate: new insights into TCTP function from a Drosophila study. Cell Adhes Migr 1(3):129–130

    Article  Google Scholar 

  • Crespo-Ortiz MP, Wei MQ (2012) Antitumor activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drug. J Biomed Biotechnol 2012:247597

    Article  PubMed  CAS  Google Scholar 

  • Cucchi U, Gianellini LM, De Ponti A, Sola F, Alzani R, Patton V, Pezzoni A, Troiani S, Saccardo MB, Rizzi S, Giorgini ML, Cappella P, Beria I, Valsasina B (2010) Phosphorylation of TCTP as a marker for polo-like kinase-1 activity in vivo. Anticancer Res 30(12):4973–4985

    CAS  PubMed  Google Scholar 

  • Cui S, Eisenacher K, Kirchhofer A, Brzozka K, Lammens A, Lammens K, Fujita T, Conzelmann KK, Krug A, Hopfner KP (2008) The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I. Mol Cell 29(2):169–179

    Article  CAS  PubMed  Google Scholar 

  • Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA 105(31):10762–10767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinkel H, Van Roey K, Michael S, Kumar M, Uyar B, Altenberg B, Milchevskaya V, Schneider M, Kuhn H, Behrendt A, Dahl SL, Damerell V, Diebel S, Kalman S, Klein S, Knudsen AC, Mader C, Merrill S, Staudt A, Thiel V, Welti L, Davey NE, Diella F, Gibson TJ (2016) ELM 2016–data update and new functionality of the eukaryotic linear motif resource. Nucleic Acids Res 44(D1):D294–D300

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Yang B, Li Y, Zhong C, Ding J (2009) Molecular basis of the acceleration of the GDP-GTP exchange of human ras homolog enriched in brain by human translationally controlled tumor protein. J Biol Chem 284(35):23754–23764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichhorn T, Winter D, Buchele B, Dirdjaja N, Frank M, Lehmann WD, Mertens R, Krauth-Siegel RL, Simmet T, Granzin J, Efferth T (2013) Molecular interaction of artemisinin with translationally controlled tumor protein (TCTP) of Plasmodium falciparum. Biochem Pharmacol 85(1):38–45

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Liu D, Yao H, Wang J (2007) Solution structure and mapping of a very weak calcium-binding site of human translationally controlled tumor protein by NMR. Arch Biochem Biophys 467(1):48–57

    Article  CAS  PubMed  Google Scholar 

  • Fischer ES, Bohm K, Lydeard JR, Yang H, Stadler MB, Cavadini S, Nagel J, Serluca F, Acker V, Lingaraju GM, Tichkule RB, Schebesta M, Forrester WC, Schirle M, Hassiepen U, Ottl J, Hild M, Beckwith RE, Harper JW, Jenkins JL, Thoma NH (2014) Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512(7512):49–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fleischer TC, Weaver CM, McAfee KJ, Jennings JL, Link AJ (2006) Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes. Genes Dev 20(10):1294–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita T, Felix K, Pinkaew D, Hutadilok-Towatana N, Liu Z, Fujise K (2008) Human fortilin is a molecular target of dihydroartemisinin. FEBS Lett 582(7):1055–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funston G, Goh W, Wei SJ, Tng QS, Brown C, Jiah Tong L, Verma C, Lane D, Ghadessy F (2012) Binding of translationally controlled tumour protein to the N-terminal domain of HDM2 is inhibited by nutlin-3. PLoS One 7(8):e42642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gachet Y, Tournier S, Lee M, Lazaris-Karatzas A, Poulton T, Bommer UA (1999) The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J Cell Sci 112(Pt 8):1257–1271

    CAS  PubMed  Google Scholar 

  • Gnanasekar M, Rao KV, Chen L, Narayanan RB, Geetha M, Scott AL, Ramaswamy K, Kaliraj P (2002) Molecular characterization of a calcium binding translationally controlled tumor protein homologue from the filarial parasites Brugia malayi and Wuchereria bancrofti. Mol Biochem Parasitol 121(1):107–118

    Article  CAS  PubMed  Google Scholar 

  • Graidist P, Yazawa M, Tonganunt M, Nakatomi A, Lin CC, Chang JY, Phongdara A, Fujise K (2007) Fortilin binds Ca2+ and blocks Ca2+-dependent apoptosis in vivo. Biochem J 408(2):181–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu X, Yao L, Ma G, Cui L, Li Y, Liang W, Zhao B, Li K (2014) TCTP promotes glioma cell proliferation in vitro and in vivo via enhanced beta-catenin/TCF-4 transcription. Neuro-oncology 16(2):217–227

    Article  CAS  PubMed  Google Scholar 

  • Haghighat NG, Ruben L (1992) Purification of novel calcium binding proteins from Trypanosoma brucei: properties of 22-, 24- and 38-kilodalton proteins. Mol Biochem Parasitol 51(1):99–110

    Article  CAS  PubMed  Google Scholar 

  • Hinojosa-Moya J, Xoconostle-Cazares B, Piedra-Ibarra E, Mendez-Tenorio A, Lucas WJ, Ruiz-Medrano R (2008) Phylogenetic and structural analysis of translationally controlled tumor proteins. J Mol Evol 66(5):472–483

    Article  CAS  PubMed  Google Scholar 

  • Hong ST, Choi KW (2013) TCTP directly regulates ATM activity to control genome stability and organ development in Drosophila melanogaster. Nat Commun 4:2986

    Article  PubMed  CAS  Google Scholar 

  • Hong ST, Choi KW (2016) Antagonistic roles of Drosophila Tctp and Brahma in chromatin remodelling and stabilizing repeated sequences. Nat Commun 7:12988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu YC, Chern JJ, Cai Y, Liu M, Choi KW (2007) Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 445(7129):785–788

    Article  CAS  PubMed  Google Scholar 

  • Iovine B, Iannella ML, Bevilacqua MA (2011) Damage-specific DNA binding protein 1 (DDB1): a protein with a wide range of functions. Int J Biochem Cell Biol 43(12):1664–1667

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, Handa H (2010) Identification of a primary target of thalidomide teratogenicity. Science 327(5971):1345–1350

    Article  CAS  PubMed  Google Scholar 

  • Itzen A, Pylypenko O, Goody RS, Alexandrov K, Rak A (2006) Nucleotide exchange via local protein unfolding--structure of Rab8 in complex with MSS4. EMBO J 25(7):1445–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaglarz MK, Bazile F, Laskowska K, Polanski Z, Chesnel F, Borsuk E, Kloc M, Kubiak JZ (2012) Association of TCTP with centrosome and microtubules. Biochem Res Int 2012:541906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeon HJ, You SY, Park YS, Chang JW, Kim JS, Oh JS (2016) TCTP regulates spindle microtubule dynamics by stabilizing polar microtubules during mouse oocyte meiosis. Biochim Biophys Acta 1863(4):630–637

    Article  CAS  PubMed  Google Scholar 

  • Johansson H, Simonsson S (2010) Core transcription factors, Oct4, Sox2 and Nanog, individually form complexes with nucleophosmin (Npm1) to control embryonic stem (ES) cell fate determination. Aging 2(11):815–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson H, Svensson F, Runnberg R, Simonsson T, Simonsson S (2010a) Phosphorylated nucleolin interacts with translationally controlled tumor protein during mitosis and with Oct4 during interphase in ES cells. PLoS One 5(10):e13678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johansson H, Vizlin-Hodzic D, Simonsson T, Simonsson S (2010b) Translationally controlled tumor protein interacts with nucleophosmin during mitosis in ES cells. Cell Cycle 9(11):2160–2169

    Google Scholar 

  • Johnson TM, Antrobus R, Johnson LN (2008) Plk1 activation by Ste20-like kinase (Slk) phosphorylation and polo-box phosphopeptide binding assayed with the substrate translationally controlled tumor protein (TCTP). Biochemistry 47(12):3688–3696

    Article  CAS  PubMed  Google Scholar 

  • Jung J, Kim M, Kim MJ, Kim J, Moon J, Lim JS, Kim M, Lee K (2004) Translationally controlled tumor protein interacts with the third cytoplasmic domain of Na,K-ATPase alpha subunit and inhibits the pump activity in HeLa cells. J Biol Chem 279(48):49868–49875

    Article  CAS  PubMed  Google Scholar 

  • Jung J, Kim HY, Maeng J, Kim M, Shin DH, Lee K (2014) Interaction of translationally controlled tumor protein with Apaf-1 is involved in the development of chemoresistance in HeLa cells. BMC Cancer 14:165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kadioglu O, Efferth T (2016) Peptide aptamer identified by molecular docking targeting translationally controlled tumor protein in leukemia cells. Invest New Drugs 34(4):515–521

    Article  CAS  PubMed  Google Scholar 

  • Kashiwakura JC, Ando T, Matsumoto K, Kimura M, Kitaura J, Matho MH, Zajonc DM, Ozeki T, Ra C, MacDonald SM, Siraganian RP, Broide DH, Kawakami Y, Kawakami T (2012) Histamine-releasing factor has a proinflammatory role in mouse models of asthma and allergy. J Clin Invest 122(1):218–228

    Article  CAS  PubMed  Google Scholar 

  • Katsogiannou M, Andrieu C, Baylot V, Baudot A, Dusetti NJ, Gayet O, Finetti P, Garrido C, Birnbaum D, Bertucci F, Brun C, Rocchi P (2014) The functional landscape of Hsp27 reveals new cellular processes such as DNA repair and alternative splicing and proposes novel anticancer targets. Mol Cell Proteomics 13(12):3585–3601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakami T, Ando T, Kawakami Y (2012) HRF-interacting molecules. Open Allergy J 5(41–46)

    Google Scholar 

  • Kawakami T, Kashiwakura J, Kawakami Y (2014) Histamine-releasing factor and immunoglobulins in asthma and allergy. Allergy Asthma Immunol Res 6(1):6–12

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Jung Y, Lee K, Kim C (2000) Identification of the calcium binding sites in translationally controlled tumor protein. Arch Pharm Res 23(6):633–636

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Min HJ, Won HY, Park H, Lee JC, Park HW, Chung J, Hwang ES, Lee K (2009) Dimerization of translationally controlled tumor protein is essential for its cytokine-like activity. PLoS One 4(7):e6464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim M, Kim M, Kim HY, Kim S, Jung J, Maeng J, Chang J, Lee K (2011a) A protein transduction domain located at the NH2-terminus of human translationally controlled tumor protein for delivery of active molecules to cells. Biomaterials 32(1):222–230

    Article  CAS  PubMed  Google Scholar 

  • Kim HY, Kim S, Youn H, Chung JK, Shin DH, Lee K (2011b) The cell penetrating ability of the proapoptotic peptide, KLAKLAKKLAKLAK fused to the N-terminal protein transduction domain of translationally controlled tumor protein, MIIYRDLISH. Biomaterials 32(22):5262–5268

    Article  CAS  PubMed  Google Scholar 

  • Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP (2011c) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44(2):325–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Chung J, Lee C, Jung J, Kwon Y, Lee K (2011d) A peptide binding to dimerized translationally controlled tumor protein modulates allergic reactions. J Mol Med 89(6):603–610

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Maeng J, Lee K (2013) Dimerization of TCTP and its clinical implications for allergy. Biochimie 95(4):659–666

    Article  CAS  PubMed  Google Scholar 

  • Kim HY, Kim S, Pyun HJ, Maeng J, Lee K (2015) Cellular uptake mechanism of TCTP-PTD in human lung carcinoma cells. Mol Pharm 12(1):194–203

    Article  CAS  PubMed  Google Scholar 

  • Klonis N, Crespo-Ortiz MP, Bottova I, Abu-Bakar N, Kenny S, Rosenthal PJ, Tilley L (2011) Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion. Proc Natl Acad Sci U S A 108(28):11405–11410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koziol MJ, Garrett N, Gurdon JB (2007) Tpt1 activates transcription of oct4 and nanog in transplanted somatic nuclei. Curr Biol 17(9):801–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishna S, Uhlemann AC, Haynes RK (2004) Artemisinins: mechanisms of action and potential for resistance. Drug Resist Updates 7(4–5):233–244

    Article  CAS  Google Scholar 

  • Krishna S, Bustamante L, Haynes R, Staines H (2008) Artemisinins: their growing importance in medicine. Trends Pharmacol Sci 29(10):520–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kronke J, Fink EC, Hollenbach PW, MacBeth KJ, Hurst SN, Udeshi ND, Chamberlain PP, Mani DR, Man HW, Gandhi AK, Svinkina T, Schneider RK, McConkey M, Jaras M, Griffiths E, Wetzler M, Bullinger L, Cathers BE, Carr SA, Chopra R, Ebert BL (2015) Lenalidomide induces ubiquitination and degradation of CK1alpha in del(5q) MDS. Nature 523(7559):183–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langdon JM, Vonakis BM, MacDonald SM (2004) Identification of the interaction between the human recombinant histamine releasing factor/translationally controlled tumor protein and elongation factor-1 delta (also known as elongation factor-1B beta). Biochim Biophys Acta 1688(3):232–236

    Article  CAS  PubMed  Google Scholar 

  • Lange OF, Rossi P, Sgourakis NG, Song Y, Lee HW, Aramini JM, Ertekin A, Xiao R, Acton TB, Montelione GT, Baker D (2012) Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples. Proc Natl Acad Sci U S A 109(27):10873–10878

    Article  PubMed  PubMed Central  Google Scholar 

  • Le TP, Vuong LT, Kim AR, Hsu YC, Choi KW (2016) 14-3-3 proteins regulate Tctp-Rheb interaction for organ growth in Drosophila. Nat Commun 7:11501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leclercq TM, Moretti PA, Pitson SM (2011) Guanine nucleotides regulate sphingosine kinase 1 activation by eukaryotic elongation factor 1A and provide a mechanism for eEF1A-associated oncogenesis. Oncogene 30(3):372–378

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Rho SB, Park SY, Chun T (2008) Interaction between fortilin and transforming growth factor-beta stimulated clone-22 (TSC-22) prevents apoptosis via the destabilization of TSC-22. FEBS Lett 582(8):1210–1218

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kim S, Shin DH, Kim HJ, Lee K (2011) Neuroprotective effect of Cu,Zn-superoxide dismutase fused to a TCTP-derived protein transduction domain. Eur J Pharmacol 666(1–3):87–92

    Article  CAS  PubMed  Google Scholar 

  • Leung DW, Amarasinghe GK (2012) Structural insights into RNA recognition and activation of RIG-I-like receptors. Curr Opin Struct Biol 22(3):297–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung DW, Amarasinghe GK (2016) When your cap matters: structural insights into self vs non-self recognition of 5′ RNA by immunomodulatory host proteins. Curr Opin Struct Biol 36:133–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Zhou Y, Tang G, Xiao Y (2016a) Characterization of the artemisinin binding site for translationally controlled tumor protein (TCTP) by bioorthogonal click chemistry. Bioconjug Chem 27(12):2828–2833

    Article  CAS  PubMed  Google Scholar 

  • Li S, Chen M, Xiong Q, Zhang J, Cui Z, Ge F (2016b) Characterization of the translationally controlled tumor protein (TCTP) interactome reveals novel binding partners in human cancer cells. J Proteome Res 15:3741–3751

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Peng HW, Cheng YS, Yuan HS, Yang-Yen HF (2005) Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP. Mol Cell Biol 25(8):3117–3126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowther WT, Weissbach H, Etienne F, Brot N, Matthews BW (2002) The mirrored methionine sulfoxide reductases of Neisseria gonorrhoeae pilB. Nat Struct Biol 9(5):348–352

    CAS  PubMed  Google Scholar 

  • Lu C, Xu H, Ranjith-Kumar CT, Brooks MT, Hou TY, Hu F, Herr AB, Strong RK, Kao CC, Li P (2010) The structural basis of 5′ triphosphate double-stranded RNA recognition by RIG-I C-terminal domain. Structure 18(8):1032–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas AT, Fu X, Liu J, Brannon MK, Yang J, Capelluto DG, Finkielstein CV (2014) Ligand binding reveals a role for heme in translationally-controlled tumor protein dimerization. PLoS One 9(11):e112823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lucibello M, Adanti S, Antelmi E, Dezi D, Ciafre S, Carcangiu ML, Zonfrillo M, Nicotera G, Sica L, De Braud F, Pierimarchi P (2015) Phospho-TCTP as a therapeutic target of Dihydroartemisinin for aggressive breast cancer cells. Oncotarget 6(7):5275–5291

    Article  PubMed  PubMed Central  Google Scholar 

  • Lupas AN, Zhu H, Korycinski M (2015) The thalidomide-binding domain of cereblon defines the CULT domain family and is a new member of the beta-tent fold. PLoS Comput Biol 11(1):e1004023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maeng J, Kim M, Lee H, Lee K (2015) Insulin induces phosphorylation of serine residues of translationally controlled tumor protein in 293T cells. Int J Mol Sci 16(4):7565–7576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulenga A, Azad AF (2005) The molecular and biological analysis of ixodid ticks histamine release factors. Exp Appl Acarol 37(3–4):215–229

    Article  CAS  PubMed  Google Scholar 

  • Munirathinam G, Ramaswamy K (2012) Sumoylation of human translationally controlled tumor protein is important for its nuclear transport. Biochem Res Int 2012:831940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niikura M, Liu HC, Dodgson JB, Cheng HH (2004) A comprehensive screen for chicken proteins that interact with proteins unique to virulent strains of Marek’s disease virus. Poult Sci 83(7):1117–1123

    Article  CAS  PubMed  Google Scholar 

  • O’Neill PM, Barton VE, Ward SA (2010) The molecular mechanism of action of artemisinin–the debate continues. Molecules 15(3):1705–1721

    Article  PubMed  CAS  Google Scholar 

  • Panrat T, Sinthujaroen P, Nupan B, Wanna W, Tammi MT, Phongdara A (2012) Characterization of a novel binding protein for Fortilin/TCTP–component of a defense mechanism against viral infection in Penaeus monodon. PLoS One 7(3):e33291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petzold G, Fischer ES, Thoma NH (2016) Structural basis of lenalidomide-induced CK1alpha degradation by the CRL4(CRBN) ubiquitin ligase. Nature 532(7597):127–130

    Article  CAS  PubMed  Google Scholar 

  • Ranaivoson FM, Neiers F, Kauffmann B, Boschi-Muller S, Branlant G, Favier F (2009) Methionine sulfoxide reductase B displays a high level of flexibility. J Mol Biol 394(1):83–93

    Article  CAS  PubMed  Google Scholar 

  • Rao KV, Chen L, Gnanasekar M, Ramaswamy K (2002) Cloning and characterization of a calcium-binding, histamine-releasing protein from Schistosoma mansoni. J Biol Chem 277(34):31207–31213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehmann H, Bruning M, Berghaus C, Schwarten M, Kohler K, Stocker H, Stoll R, Zwartkruis FJ, Wittinghofer A (2008) Biochemical characterisation of TCTP questions its function as a guanine nucleotide exchange factor for Rheb. FEBS Lett 582(20):3005–3010

    Article  CAS  PubMed  Google Scholar 

  • Rho SB, Lee JH, Park MS, Byun HJ, Kang S, Seo SS, Kim JY, Park SY (2011) Anti-apoptotic protein TCTP controls the stability of the tumor suppressor p53. FEBS Lett 585(1):29–35

    Article  CAS  PubMed  Google Scholar 

  • Rid R, Onder K, Trost A, Bauer J, Hintner H, Ritter M, Jakab M, Costa I, Reischl W, Richter K, MacDonald S, Jendrach M, Bereiter-Hahn J, Breitenbach M (2010) H2O2-dependent translocation of TCTP into the nucleus enables its interaction with VDR in human keratinocytes: TCTP as a further module in calcitriol signalling. J Steroid Biochem Mol Biol 118(1–2):29–40

    Article  CAS  PubMed  Google Scholar 

  • Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42(Web Server issue):W320–W324

    Google Scholar 

  • Sanchez JC, Schaller D, Ravier F, Golaz O, Jaccoud S, Belet M, Wilkins MR, James R, Deshusses J, Hochstrasser D (1997) Translationally controlled tumor protein: a protein identified in several nontumoral cells including erythrocytes. Electrophoresis 18(1):150–155

    Article  CAS  PubMed  Google Scholar 

  • Seo EJ, Efferth T (2016) Interaction of antihistaminic drugs with human translationally controlled tumor protein (TCTP) as novel approach for differentiation therapy. Oncotarget 7(13):16818–16839

    Article  PubMed  PubMed Central  Google Scholar 

  • Slomianny C (1990) Three-dimensional reconstruction of the feeding process of the malaria parasite. Blood Cells 16(2–3):369–378

    CAS  PubMed  Google Scholar 

  • Stellfox ME, Nardi IK, Knippler CM, Foltz DR (2016) Differential binding partners of the Mis18alpha/beta YIPPEE domains regulate Mis18 complex recruitment to centromeres. Cell Rep 15(10):2127–2135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian L, Medina-Pritchard B, Barton R, Spiller F, Kulasegaran-Shylini R, Radaviciute G, Allshire RC, Arockia Jeyaprakash A (2016) Centromere localization and function of Mis18 requires Yippee-like domain-mediated oligomerization. EMBO Rep 17(4):496–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Susini L, Besse S, Duflaut D, Lespagnol A, Beekman C, Fiucci G, Atkinson AR, Busso D, Poussin P, Marine JC, Martinou JC, Cavarelli J, Moras D, Amson R, Telerman A (2008) TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death Differ 15(8):1211–1220

    Article  CAS  PubMed  Google Scholar 

  • Telerman A, Amson R, Cans C, Nancy-Portebois V, Passer BJ (2006) US Patent 20060140970 (06/29/2006)

    Google Scholar 

  • Teshima S, Rokutan K, Nikawa T, & Kishi K (1998) Macrophage colony-stimulating factor stimulates synthesis and secretion of a mouse homolog of a human IgE-dependent histamine-releasing factor by macrophages in vitro and in vivo. J Immunol 161(11):6356–6366

    Google Scholar 

  • Thaw P, Baxter NJ, Hounslow AM, Price C, Waltho JP, Craven CJ (2001) Structure of TCTP reveals unexpected relationship with guanine nucleotide-free chaperones. Nat Struct Biol 8(8):701–704

    Article  CAS  PubMed  Google Scholar 

  • Thebault S, Agez M, Chi X, Stojko J, Cura V, Telerman SB, Maillet L, Gautier F, Billas-Massobrio I, Birck C, Troffer-Charlier N, Karafin T, Honore J, Senff-Ribeiro A, Montessuit S, Johnson CM, Juin P, Cianferani S, Martinou JC, Andrews DW, Amson R, Telerman A, Cavarelli J (2016) TCTP contains a BH3-like domain, which instead of inhibiting, activates Bcl-xL. Sci Rep 6:19725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tonganunt M, Nupan B, Saengsakda M, Suklour S, Wanna W, Senapin S, Chotigeat W, Phongdara A (2008) The role of Pm-fortilin in protecting shrimp from white spot syndrome virus (WSSV) infection. Fish Shellfish Immunol 25(5):633–637

    Article  CAS  PubMed  Google Scholar 

  • Tsarova K, Yarmola EG, Bubb MR (2010) Identification of a cofilin-like actin-binding site on translationally controlled tumor protein (TCTP). FEBS Lett 584(23):4756–4760

    Article  CAS  PubMed  Google Scholar 

  • Tuynder M, Fiucci G, Prieur S, Lespagnol A, Geant A, Beaucourt S, Duflaut D, Besse S, Susini L, Cavarelli J, Moras D, Amson R, Telerman A (2004) Translationally controlled tumor protein is a target of tumor reversion. Proc Natl Acad Sci U S A 101(43):15364–15369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vedadi M, Lew J, Artz J, Amani M, Zhao Y, Dong A, Wasney GA, Gao M, Hills T, Brokx S, Qiu W, Sharma S, Diassiti A, Alam Z, Melone M, Mulichak A, Wernimont A, Bray J, Loppnau P, Plotnikova O, Newberry K, Sundararajan E, Houston S, Walker J, Tempel W, Bochkarev A, Kozieradzki I, Edwards A, Arrowsmith C, Roos D, Kain K, Hui R (2007) Genome-scale protein expression and structural biology of Plasmodium falciparum and related Apicomplexan organisms. Mol Biochem Parasitol 151(1):100–110

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Fonseca BD, Tang H, Liu R, Elia A, Clemens MJ, Bommer UA, Proud CG (2008) Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling. J Biol Chem 283(45):30482–30492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Hu C, Hua X, Song L, Xia Q (2013) Translationally controlled tumor protein, a dual functional protein involved in the immune response of the silkworm, Bombyx mori. PLoS One 8(7):e69284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Gong W, Yao X, Wang J, Perrett S, Feng Y (2015) Evolutionarily conserved binding of translationally controlled tumor protein to eukaryotic elongation factor 1B. J Biol Chem 290(14):8694–8710

    Article  CAS  PubMed  Google Scholar 

  • Xiao B, Chen D, Luo S, Hao W, Jing F, Liu T, Wang S, Geng Y, Li L, Xu W, Zhang Y, Liao X, Zuo D, Wu Y, Li M, Ma Q (2016) Extracellular translationally controlled tumor protein promotes colorectal cancer invasion and metastasis through Cdc42/JNK/MMP9 signaling. Oncotarget 7(31):50057–50073

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu A, Bellamy AR, Taylor JA (1999) Expression of translationally controlled tumour protein is regulated by calcium at both the transcriptional and post-transcriptional level. Biochem J 342:683–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Hou YX, Langlais P, Erickson P, Zhu J, Shi CX, Luo M, Zhu Y, Xu Y, Mandarino LJ, Stewart K, Chang XB (2016) Expression of the cereblon binding protein argonaute 2 plays an important role for multiple myeloma cell growth and survival. BMC Cancer 16:297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang Y, Yang F, Xiong Z, Yan Y, Wang X, Nishino M, Mirkovic D, Nguyen J, Wang H, Yang XF (2005) An N-terminal region of translationally controlled tumor protein is required for its antiapoptotic activity. Oncogene 24(30):4778–4788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarm FR (2002) Plk phosphorylation regulates the microtubule-stabilizing protein TCTP. Mol Cell Biol 22(17):6209–6221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon T, Jung J, Kim M, Lee KM, Choi EC, Lee K (2000) Identification of the self-interaction of rat TCTP/IgE-dependent histamine-releasing factor using yeast two-hybrid system. Arch Biochem Biophys 384(2):379–382

    Article  CAS  PubMed  Google Scholar 

  • Yoon T, Kim M, Lee K (2006) Inhibition of Na,K-ATPase-suppressive activity of translationally controlled tumor protein by sorting nexin 6. FEBS Lett 580(14):3558–3564

    Article  CAS  PubMed  Google Scholar 

  • Zhang X (2014) Etude de complexes protéine-protéine impliquant la chaperone de bas poids moléculaire HSP27: Implications dans le cancer de la prostate. PhD Thesis, Aix-Marseille Université

    Google Scholar 

  • Zhang D, Li F, Weidner D, Mnjoyan ZH, Fujise K (2002) Physical and functional interaction between myeloid cell leukemia 1 protein (MCL1) and Fortilin. The potential role of MCL1 as a fortilin chaperone. J Biol Chem 277(40):37430–37438

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, de Toledo SM, Pandey BN, Guo G, Pain D, Li H, Azzam EI (2012) Role of the translationally controlled tumor protein in DNA damage sensing and repair. Proc Natl Acad Sci U S A 109(16):E926–E933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Li W, Xiao Y (2016) Profiling of multiple targets of artemisinin activated by hemin in cancer cell proteome. ACS Chem Biol 11(4):882–888

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewen Lescop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Assrir, N., Malard, F., Lescop, E. (2017). Structural Insights into TCTP and Its Interactions with Ligands and Proteins. In: Telerman, A., Amson, R. (eds) TCTP/tpt1 - Remodeling Signaling from Stem Cell to Disease. Results and Problems in Cell Differentiation, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-319-67591-6_2

Download citation

Publish with us

Policies and ethics