Skip to main content

Attribute-Based Decision Graphs and Their Roles in Machine Learning Related Tasks

  • Chapter
  • First Online:
Advances in Feature Selection for Data and Pattern Recognition

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 138))

  • 1255 Accesses

Abstract

Recently, new supervised machine learning algorithm has been proposed which is heavily supported by the construction of an attribute-based decision graph (AbDG) structure, for representing, in a condensed way, the training set associated with a learning task. Such structure has been successfully used for the purposes of classification and imputation in both, stationary and non-stationary environments. This chapter provides a detailed presentation of the motivations and main technicalities involved in the process of constructing AbDGs, as well as stresses some of the strengths of this graph-based structure, such as robustness and low computational costs associated with both, training and memory use. Given a training set, a collection of algorithms for constructing a weighted graph (i.e., an AbDG) based on such data is presented. The chapter describes in details algorithms involved in creating the set of vertices, the set of edges and, also, assigning labels to vertices and weights to edges. Ad-hoc algorithms for using AbDGs for both, classification or imputation purposes, are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, S., Branson, K., Belongie, S.: Hihger order learning with graphs. In: Proceedings of the 23rd International Conference on Machine Learning (ICML 2006), pp. 17–24. ACM, New York (2006)

    Google Scholar 

  2. Aupetit, M.: Learning topology with the generative Gaussian graph and the em algorithm (2006). In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances in Neural Information Processing Systems 18, pp. 83–90. MIT Press, Cambridge (2006)

    Google Scholar 

  3. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 1, 1–48 (2006)

    MATH  MathSciNet  Google Scholar 

  4. Bertini Jr., J.R., Nicoletti, M.C.: A genetic algorithm for improving the induction of attribute-based decision graph classifiers. In: Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4104–4110. IEEE Press, New York (2016)

    Google Scholar 

  5. Bertini Jr., J.R., Nicoletti, M.C., Zhao, L.: Attribute-based decision graphs for multiclass data classification. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp. 1779–1785 (2013)

    Google Scholar 

  6. Bertini Jr., J.R., Nicoletti, M.C., Zhao, L.: Ensemble of complete p-partite graph classifiers for non-stationary environments. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp. 1802–1809 (2013)

    Google Scholar 

  7. Bertini Jr., J.R., Nicoletti, M.C., Zhao, L.: Imputation of missing data supported by complete p-partite attribute-based decision graph. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN), pp. 1100–1106 (2014)

    Google Scholar 

  8. Bertini Jr., J.R., Nicoletti, M.C., Zhao, L.: An embedded imputation method via attribute-based decision graphs. Expert Syst. Appl. 57, 159–177 (2016)

    Article  Google Scholar 

  9. Bertini Jr., J.R., Nicoletti, M.C., Zhao, L.: Attribute-based decision graphs: a framework for multiclass data classification. Neural Netw. 85, 69–84 (2017)

    Google Scholar 

  10. Bertini Jr., J.R., Zhao, L., Motta, R., Lopes, A.A.: A nonparametric classification method based on k-associated graphs. Inf. Sci. 181, 5435–5456 (2011)

    Article  MathSciNet  Google Scholar 

  11. Bi, W., Kwok, J.: Multi-label classification on tree and dag-structured hierarchies. In: Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 17–24. ACM, New York (2011)

    Google Scholar 

  12. Chapelle, O., Zien, A., Schölkopf, B. (eds.): Semi-supervised Learning, 1st edn. MIT Press, Cambridge (2006)

    Google Scholar 

  13. Cheh, Z., Zhao, H.: Pattern recognition with weighted complex networks. Phys. Rev. E 78(056107), 1–6 (2008)

    Google Scholar 

  14. Chen, J., Fang, H.R., Saad, Y.: Fast approximate knn graph construction for high dimensional data via recursive lanczos bisection. J. Logic Program. 10, 1989–2012 (2009)

    MATH  Google Scholar 

  15. Cook, D., Holder, L.: Graph-based data mining. IEEE Intell. Syst. 15(2), 32–41 (2000)

    Article  Google Scholar 

  16. Culp, M., Michailidis, G.: Graph-based semisupervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 30(1), 174–179 (2008)

    Article  Google Scholar 

  17. Eppstein, D., Paterson, M.S., Yao, F.: On nearest-neighbor graphs. Discret. Comput. Geom. 17(3), 263–282 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous valued attributes for classification learning. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence, vol. 2, pp. 1022–1027. Morgan Kaufmann Publishers, San Francisco (1993)

    Google Scholar 

  19. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  20. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edn. Springer, Canada (2009)

    Book  MATH  Google Scholar 

  21. Hein, M., Audibert, J.Y., von Luxburg, U.: Discretization: an enabling technique. Data Min. Knowl. Disc. 6, 393–423 (2002)

    Article  MathSciNet  Google Scholar 

  22. Hein, M., Audibert, J.Y., von Luxburg, U.: Graph Laplacians and their convergence on random neighborhood graphs. J. Mach. Learn. Res. 8, 1325–1368 (2007)

    MATH  MathSciNet  Google Scholar 

  23. Holder, L., Cook, D.: Graph-based relational learning: current and future directions. ACM SIGKDD Explor. 5(1), 90–93 (2003)

    Article  Google Scholar 

  24. Holder, L., Cook, D., Coble, J., Mukherjee, M.: Graph-based relational learning with application to security. Fundamenta Informaticae 66, 1–19 (2005)

    MATH  MathSciNet  Google Scholar 

  25. Jensen, D., Neville, J., Gallagher, B.: Why collective inference improves relational classification? In: Proceedings of the 10th International Conference on Knowledge Discovery and Data Mining (ACM SIGKDD’04), pp. 593–598. ACM (2004)

    Google Scholar 

  26. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  27. Macskassy, S., Provost, F.: A simple relational classifier. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining (KDD), Workshop on Multi-Relational Data Mining, pp. 64–76 (2003)

    Google Scholar 

  28. Malliaros, F., Vazirgiannis, M.: Clustering and community detection in directed networks: a survey. Phys. Rep. 533, 95–142 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. Muggleton, S.: Inductive logic programming: issues, results and the challenge of learning language in logic. Artif. Intell. 114, 283–296 (1999)

    Article  MATH  Google Scholar 

  30. Muggleton, S., Raedt, L.D.: Inductive logic programming: theory and methods. J. Logic Progr. 19–20, 629–679 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  31. Newman, M.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Quinlan, J.R.: C4.5 Programs for Machine Learning, 1st edn. Morgan Kaufmann Publishers, San Francisco (1993)

    Google Scholar 

  33. Schaeffer, S.: Graph clustering. Comput. Sci. Rev. 1, 27–34 (2007)

    Article  MATH  Google Scholar 

  34. Specht, D.F.: Probabilistic neural networks. Neural Netw. 3, 109–118 (1990)

    Article  Google Scholar 

  35. Vapnik, V.: The nature of statistical learning theory. Springer, Berlin (1999)

    MATH  Google Scholar 

  36. Wenga, L., Dornaikab, F., Jina, Z.: Graph construction based on data self-representativeness and Laplacian smoothness. Neurocomputing 207, 476–487 (2016)

    Article  Google Scholar 

  37. Xie, J., Kelley, S., Boleslaw, K.S.: Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput. Surv. 45(43), 1–35 (2013)

    Article  MATH  Google Scholar 

  38. Yang, Z., Cohen, W.W., Salakhutdinov, R.: Revisiting semi-supervised learning with graph embeddings. In: Proceedings of the 33rd International Conference on Machine Learning (2016)

    Google Scholar 

  39. Yoshida, K., Motoda, H., Indurkhya, N.: Graph-based induction as a unified learning framework. J. Appl. Intell. 4, 297–328 (1994)

    Article  Google Scholar 

  40. Zhu, X.: Semi-supervised learning literature survey. Technical report 1530, Computer-Science, University of Wisconsin-Madison (2008)

    Google Scholar 

  41. Zhu, X., Lafferty, J., Ghahramani, Z.: Semi-supervised learning: from Gaussian fields to Gaussian processes. Technical report CMU-CS-03-175, Carnegie Mellon University (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Roberto Bertini Junior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bertini Junior, J.R., Nicoletti, M.d.C. (2018). Attribute-Based Decision Graphs and Their Roles in Machine Learning Related Tasks. In: Stańczyk, U., Zielosko, B., Jain, L. (eds) Advances in Feature Selection for Data and Pattern Recognition. Intelligent Systems Reference Library, vol 138. Springer, Cham. https://doi.org/10.1007/978-3-319-67588-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67588-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67587-9

  • Online ISBN: 978-3-319-67588-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics