Skip to main content

Shape Descriptions and Classes of Shapes. A Proximal Physical Geometry Approach

  • Chapter
  • First Online:

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 138))

Abstract

This chapter introduces the notion of classes of shapes that have descriptive proximity to each other in planar digital 2D image object shape detection. A finite planar shape is planar region with a boundary (shape contour) and a nonempty interior (shape surface). The focus here is on the triangulation of image object shapes, resulting in maximal nerve complexes (MNCs) from which shape contours and shape interiors can be detected and described. An MNC is collection of filled triangles (called 2-simplexes) that have a vertex in common. Interesting MNCs are those collections of 2-simplexes that have a shape vertex in common. The basic approach is to decompose an planar region containing an image object shape into 2-simplexes in such a way that the filled triangles cover either part or all of a shape. After that, an unknown shape can be compared with a known shape by comparing the measurable areas of a collection of 2-simplexes covering both known and unknown shapes. Each known shape with a known triangulation belongs to a class of shapes that is used to classify unknown triangulated shapes. Unlike the conventional Delaunay triangulation of spatial regions, the proposed triangulation results in simplexes that are filled triangles, derived by the intersection of half spaces, where the edge of each half space contains a line segment connected between vertices called sites (generating points). A straightforward result of this approach to image geometry is a rich source of simple descriptions of plane shapes of image objects based on the detection of nerve complexes that are maximal nerve complexes or MNCs. The end result of this work is a proximal physical geometric approach to detecting and classifying image object shapes.

This research has been supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) discovery grants 194376, 185986 and Instituto Nazionale di Alta Matematica (INdAM) Francesco Severi, Gruppo Nazionale per le Strutture Algebriche, Geometriche e Loro Applicazioni grant 9 920160 000362, n.prot U 2016/000036.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Many thanks to the reviewer for pointing this out.

References

  1. Adamaszek, M., Adams, H., Frick, F., Peterson, C., Previte-Johnson, C.: Nerve complexes on circular arcs, 1–17. arXiv:1410.4336v1 (2014)

  2. Ahmad, M., Peters, J.: Delta complexes in digital images. Approximating image object shapes, 1–18. arXiv:1706.04549v1 (2017)

  3. Alexandroff, P.: Über den algemeinen dimensionsbegriff und seine beziehungen zur elementaren geometrischen anschauung. Math. Ann. 98, 634 (1928)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alexandroff, P.: Elementary concepts of topology. Dover Publications, Inc., New York (1965). 63 pp, translation of Einfachste Grundbegriffe der Topologie. Springer, Berlin (1932), translated by Alan E. Farley, Preface by D. Hilbert, MR0149463

    Google Scholar 

  5. Borsuk, K.: On the imbedding of systems of compacta in simplicial complexes. Fund. Math. 35, 217–234 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borsuk, K.: Theory of shape. Monografie Matematyczne, Tom 59. (Mathematical Monographs, vol. 59) PWN—Polish Scientific Publishers (1975). MR0418088, Based on K. Borsuk, Theory of shape. Lecture Notes Series, No. 28, Matematisk Institut, Aarhus Universitet, Aarhus (1971), MR0293602

    Google Scholar 

  7. Borsuk, K., Dydak, J.: What is the theory of shape? Bull. Austral. Math. Soc. 22(2), 161–198 (1981). MR0598690

    Google Scholar 

  8. Bourbaki, N.: Elements of Mathematics. General Topology, Part 1. Hermann & Addison-Wesley, Paris (1966). I-vii, 437 pp

    Google Scholar 

  9. C̆ech, E.: Topological Spaces. John Wiley & Sons Ltd., London (1966). Fr seminar, Brno, 1936–1939; rev. ed. Z. Frolik, M. Katĕtov

    Google Scholar 

  10. Concilio, A.D., Guadagni, C., Peters, J., Ramanna, S.: Descriptive proximities I: properties and interplay between classical proximities and overlap, 1–12. arXiv:1609.06246 (2016)

  11. Concilio, A.D., Guadagni, C., Peters, J., Ramanna, S.: Descriptive proximities. Properties and interplay between classical proximities and overlap, 1–12. arXiv:1609.06246v1 (2016)

  12. Delaunay: Sur la sphère vide. Izvestia Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk (7), 793–800 (1934)

    Google Scholar 

  13. Edelsbrunner, H.: Modeling with simplical complexes. In: Proceedings of the Canadian Conference on Computational Geometry, pp. 36–44, Canada (1994)

    Google Scholar 

  14. Edelsbrunner, H., Harer, J.: Computational Topology. An Introduction. American Mathematical Society, Providence, R.I. (2010). Xii+110 pp., MR2572029

    Google Scholar 

  15. Efremovič, V.: The geometry of proximity I (in Russian). Mat. Sb. (N.S.) 31(73)(1), 189–200 (1952)

    Google Scholar 

  16. Fontelos, M., Lecaros, R., López-Rios, J., Ortega, J.: Stationary shapes for 2-d water-waves and hydraulic jumps. J. Math. Phys. 57(8), 081520, 22 pp (2016). MR3541857

    Google Scholar 

  17. Gratus, J., Porter, T.: Spatial representation: discrete vs. continuous computational models: a spatial view of information. Theor. Comput. Sci. 365(3), 206–215 (2016)

    Article  MATH  Google Scholar 

  18. Guadagni, C.: Bornological convergences on local proximity spaces and \(\omega _{\mu }\)-metric spaces. Ph.D. thesis, Università degli Studi di Salerno, Salerno, Italy (2015). Supervisor: A. Di Concilio, 79 pp

    Google Scholar 

  19. Kokkinos, I., Yuille, A.: Learning an alphabet of shape and appearance for multi-class object detection. Int. J. Comput. Vis. 93(2), 201–225 (2011). https://doi.org/10.1007/s11263-010-0398-7

    Article  MATH  MathSciNet  Google Scholar 

  20. Leray, J.: L’anneau d’homologie d’une reprësentation. Les Comptes rendus de l’Académie des sciences 222, 1366–1368 (1946)

    MATH  Google Scholar 

  21. Lodato, M.: On topologically induced generalized proximity relations, Ph.D. thesis. Rutgers University (1962). Supervisor: S. Leader

    Google Scholar 

  22. Maggi, F., Mihaila, C.: On the shape of capillarity droplets in a container. Calc. Var. Partial Differ. Equ. 55(5), 55:122 (2016). MR3551302

    Google Scholar 

  23. Naimpally, S., Peters, J.: Topology with Applications. Topological Spaces via Near and Far. World Scientific, Singapore (2013). Xv + 277 pp, American Mathematical Society. MR3075111

    Google Scholar 

  24. Opelt, A., Pinz, A., Zisserman, A.: Learning an alphabet of shape and appearance for multi-class object detection. Int. J. Comput. Vis. 80(1), 16–44 (2008). https://doi.org/10.1007/s11263-008-0139-3

    Article  Google Scholar 

  25. Peters, J.: Near sets. General theory about nearness of sets. Applied. Math. Sci. 1(53), 2609–2629 (2007)

    MATH  MathSciNet  Google Scholar 

  26. Peters, J.: Near sets. Special theory about nearness of objects. Fundamenta Informaticae 75, 407–433 (2007). MR2293708

    Google Scholar 

  27. Peters, J.: Near sets: an introduction. Math. Comput. Sci. 7(1), 3–9 (2013). http://doi.org/10.1007/s11786-013-0149-6. MR3043914

  28. Peters, J.: Topology of Digital Images - Visual Pattern Discovery in Proximity Spaces, vol. 63. Intelligent Systems Reference Library. Springer (2014). Xv + 411 pp. Zentralblatt MATH Zbl 1295, 68010

    Google Scholar 

  29. Peters, J.: Visibility in proximal Delaunay meshes and strongly near Wallman proximity. Adv. Math. Sci. J. 4(1), 41–47 (2015)

    Google Scholar 

  30. Peters, J.: Computational Proximity. Excursions in the Topology of Digital Images. Intelligent Systems Reference Library 102. Springer (2016). Viii + 445 pp. http://doi.org/10.1007/978-3-319-30262-1

  31. Peters, J.: Proximal relator spaces. Filomat 30(2), 469–472 (2016). MR3497927

    Google Scholar 

  32. Peters, J.: Two forms of proximal physical geometry. axioms, sewing regions together, classes of regions, duality, and parallel fibre bundles, 1–26. arXiv:1608.06208 (2016). To appear in Adv. Math. Sci. J. 5 (2016)

  33. Peters, J.: Foundations of Computer Vision. Computational Geometry, Visual Image Structures and Object Shape Detection. Intelligent Systems Reference Library 124. Springer International Publishing, Switzerland (2017). I-xvii, 432 pp. http://doi.org/10.1007/978-3-319-52483-2

  34. Peters, J.: Computational Topology of Digital Images. Visual Structures and Shapes. Intelligent Systems Reference Library. Springer International Publishing, Switzerland (2018)

    Google Scholar 

  35. Peters, J., Guadagni, C.: Strongly near proximity and hyperspace topology, 1–6. arXiv:1502.05913 (2015)

  36. Peters, J., Ramanna, S.: Maximal nucleus clusters in Pawlak paintings. Nerves as approximating tools in visual arts. In: Proceedings of Federated Conference on Computer Science and Information Systems 8 (ISSN 2300-5963), 199–2022 (2016). http://doi.org/10.15439/2016F004

  37. Peters, J., Tozzi, A., Ramanna, S.: Brain tissue tessellation shows absence of canonical microcircuits. Neurosci. Lett. 626, 99–105 (2016)

    Article  Google Scholar 

  38. Rényi, A.: On measures of entropy and information. In: Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 547–547. University of California Press, Berkeley (2011). Math. Sci. Net. Review MR0132570

    Google Scholar 

  39. de Verdière, E., Ginot, G., Goaoc, X.: Multinerves and helly numbers of acylic families. In: Proceedings of 28th Annual Symposium on Computational Geometry, pp. 209–218 (2012)

    Google Scholar 

  40. Voronoï, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. premier mémoir. J. für die reine und angewandte math. 133, 97–178 (1907). JFM 38.0261.01

    Google Scholar 

  41. Wallman, H.: Lattices and topological spaces. Ann. Math. 39(1), 112–126 (1938)

    Article  MATH  MathSciNet  Google Scholar 

  42. Ziegler, G.: Lectures on polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995). X+370 pp. ISBN: 0-387-94365-X, MR1311028

    Google Scholar 

  43. Ziegler, G.: Lectures on Polytopes. Springer, Berlin (2007). http://doi.org/10.1007/978-1-4613-8431-1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Francis Peters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peters, J.F., Ramanna, S. (2018). Shape Descriptions and Classes of Shapes. A Proximal Physical Geometry Approach. In: Stańczyk, U., Zielosko, B., Jain, L. (eds) Advances in Feature Selection for Data and Pattern Recognition. Intelligent Systems Reference Library, vol 138. Springer, Cham. https://doi.org/10.1007/978-3-319-67588-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67588-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67587-9

  • Online ISBN: 978-3-319-67588-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics