Skip to main content

An Integer 0-1 Linear Programming Approach for Computing Inconsistency Degree in Product-Based Possibilistic DL-Lite

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10564))

Included in the following conference series:

  • 552 Accesses

Abstract

This paper considers the problem of computing inconsistency degree of uncertain knowledge bases expressed in product-based possibilistic DL-Lite, which is an extension of DL-Lite to deal with uncertainty in the product-based possibility theory framework. Indeed, computing the inconsistency degree is at the heart of any query answering process in such knowledge bases. Unlike previous work where uncertainty is only considered at the ABox level, in the present work both ABox and TBox may be uncertain. We discuss the new form of conflicts and how to obtain them by a generalized negative closure procedure. Then, we model the inconsistency degree computation as an integer 0-1 linear programming problem and we show the efficiency of this choice by a comparison with two other solutions, using the weighted Max-SAT and the approximate greedy algorithm for the weighted set cover problem, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    When we write \(C(\overrightarrow{a})\), \(\overrightarrow{a}\) is an individual if C is a concept and a pair of individuals if C is a role.

  2. 2.

    Here, ln denotes the natural logarithm function.

  3. 3.

    ILOG. Cplex 10.0.: http://www.ilog.com/products/cplex/.

References

  1. Artale, A., Ryzhikov, V., Kontchakov, R.: DL-Lite with attributes and datatypes. In: 20th European Conference on Artificial Intelligence (ECAI-2012), pp. 61–66 (2012)

    Google Scholar 

  2. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-lite family and relations. J. Artif. Intell. Res. 36, 1–69 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Baader, E., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook. Theory, Implementation, and Applications. Cambridge University Press, New York (2003)

    MATH  Google Scholar 

  4. Benferhat, S., Bouraoui, Z.: Min-based possibilistic DL-Lite. J. Logic Comput. 27(1), 261–297 (2017). First published online April 12 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benferhat, S., Boutouhami, K., Khellaf, F., Nouioua, F.: Algorithms for quantitative-based possibilistic lightweight ontologies. In: Fujita, H., Ali, M., Selamat, A., Sasaki, J., Kurematsu, M. (eds.) IEA/AIE 2016. LNCS, vol. 9799, pp. 364–372. Springer, Cham (2016). doi:10.1007/978-3-319-42007-3_31

    Google Scholar 

  6. Benferhat, S., Boutouhami, K., Khellaf, F., Nouioua, F.: Representing lightweight ontologies in a product-based possibility theory framework. In: Ferraro, M.B., Giordani, P., Vantaggi, B., Gagolewski, M., Gil, M.Á., Grzegorzewski, P., Hryniewicz, O. (eds.) Soft Methods for Data Science. AISC, vol. 456, pp. 45–52. Springer, Cham (2017). doi:10.1007/978-3-319-42972-4_6

    Chapter  Google Scholar 

  7. Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answering for robust ontology-based data access. In: 23rd International Joint Conference on Artificial Intelligence, pp. 775–781 (2013)

    Google Scholar 

  8. Bobillo, F., Delgado, M., Gómez-Romero, J.: Reasoning in fuzzy OWL 2 with DeLorean. In: Bobillo, F., Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) UniDL/URSW 2008-2010. LNCS, vol. 7123, pp. 119–138. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35975-0_7

    Chapter  Google Scholar 

  9. Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)

    Book  MATH  Google Scholar 

  10. Eiter, T., Lukasiewicz, T., Predoiu, L.: Generalized consistent query answering under existential rules. In: 15th International Conference on Principles of Knowledge Representation and Reasoning, pp. 359–368 (2016)

    Google Scholar 

  11. Heinsohn, J.: Probabilistic description logics. In: 10th International Conference on Uncertainty in Artificial Intelligence, pp. 311–318 (1994)

    Google Scholar 

  12. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL entailments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 267–280. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76298-0_20

    Chapter  Google Scholar 

  13. Qi, G., Ji, Q., Pan, J.Z., Du, J.: Extending description logics with uncertainty reasoning in possibilistic logic. Int. J. Intell. Syst. 26(4), 353–381 (2011)

    Article  MATH  Google Scholar 

  14. Qi, G., Ji, Q., Pan, J.Z., Du, J.: PossDL — a possibilistic DL reasoner for uncertainty reasoning and inconsistency handling. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6089, pp. 416–420. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13489-0_35

    Chapter  Google Scholar 

  15. Ramachandran, R., Qi, G., Wang, K., Wang, J., Thornton, J.: Probabilistic reasoning in DL-Lite. In: Anthony, P., Ishizuka, M., Lukose, D. (eds.) PRICAI 2012. LNCS, vol. 7458, pp. 480–491. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32695-0_43

    Chapter  Google Scholar 

  16. Rosati, R.: On the complexity of dealing with inconsistency in description logic ontologies. In: International Joint Conference on Artificial Intelligence, pp. 1057–1062 (2011)

    Google Scholar 

  17. Straccia, U.: Reasoning within fuzzy description logics. J. Artif. Intell. Res. 14, 137–166 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Wang, Z., Wang, K., Zhuang, Z., Qi, G.: Instance-driven ontology evolution in DL-Lite. In: 29th AAAI Conference, pp. 1656–1662 (2015)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the european project H2020 Marie Sklodowska-Curie Actions (MSCA) research and Innovation Staff Exchange (RISE): AniAge (High Dimensional Heterogeneous Data based Animation Techniques for Southeast Asian Intangible Cultural Heritage and from ASPIQ project reference ANR-12-BS02-0003 of French National Research Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Nouioua .

Editor information

Editors and Affiliations

Appendix: Proofs

Appendix: Proofs

Proof

of Proposition 1.

In Proposition 1, \({\mathcal {K}}_1\) represents a Pb-\(\pi \)-DL-Lite KB obtained from \({\mathcal {K}}\) by adding the assumption that B(a) (resp. R(ab)) is surely false. Note that item 2. follows immediately from item 1. of Proposition 1 and Eq. 5. Hence, it is enough to show that item 1. of Proposition 1 holds. So, let us show that \(Inc({\mathcal {K}}_1)= N_{{\mathcal {K}}}(B(a))\) (a similar reasoning is valid for \(Inc({\mathcal {K}}_1)= N_{{\mathcal {K}}}(R(a,b))\)).

Let I be a DL-lite interpretation. Since \({\mathcal {K}}_1\) is composed of \({\mathcal {K}}\cup \{(D \sqsubseteq \lnot B, 1), (D(a), 1)\}\), we have two cases:

  • If \(I\,\,\models \,\,D(a)\) and \(I \,\models \, D \sqsubseteq \lnot B\) (Hence \(I \nvDash B(a)\)) then \(\pi _{{\mathcal {K}}_1}(I) = \pi _{{\mathcal {K}}}(I)\).

  • If \(I \nvDash D(a)\) or \(I \nvDash D \sqsubseteq \lnot B\) then \(\pi _{{\mathcal {K}}_1}(I) = 0\).

Hence, we have: \(\max _{I\in \varOmega } (\pi _{{\mathcal {K}}_1}(I)) = \max _{I\in \varOmega , I \nvDash B(a)} (\pi _{{\mathcal {K}}}(I))\). It follows from Eqs. 3 and 4 that \(Inc({\mathcal {K}}_1) = 1 - \max _{I\in \varOmega , I \nvDash B(a)} (\pi _{{\mathcal {K}}}(I)) = N_{{\mathcal {K}}}(B(a))\)    \(\blacksquare \)

Proof

of Proposition 2.

Let K be a Pb-\(\pi \)-DL-Lite KB, \(LP_{{\mathcal {K}}}\) be the corresponding integer linear program defined as in Definition 4. We consider that the formulas (axioms and assertions) of \({\mathcal {K}}\) are indexed from 1 to \(n = |{\mathcal {T}}\cup {\mathcal {A}}|\). The formula \(\langle \varPhi _i, \alpha _i \rangle \) in \({\mathcal {K}}\) corresponds to the variable of index i in \(LP_{{\mathcal {K}}}\).

\(\Rightarrow \)) Suppose that \(Inc({\mathcal {K}}) = \lambda \). Then by Definition 3, \(\lambda = 1 - \max _{I\in \varOmega } (\pi _{{\mathcal {K}}}(\textit{I}))\). Let \(I_1\) be an interpretation such that \(\pi _{{\mathcal {K}}}(I_1) = \max _{I\in \varOmega } (\pi _{{\mathcal {K}}}(\textit{I}))\).

Let J be the set of indices of formulas falsified by \(I_1\), i.e., . By Definition 2, \(\pi _{{\mathcal {K}}}(I_1) = \prod _{i \in J} (1-\alpha _i)\) and hence \(\lambda = 1- \pi _{{\mathcal {K}}}(I_1)\).

Let \(Y=(y_1, \dots , y_n)\) be a binary vector such that \(y_i = 1\) if \(i\in J\) and \(y_i=0\) otherwise. Let us show that Y is an optimal solution of \(LP_{{\mathcal {K}}}\) whose objective function is \(F(\lambda )\).

Since for all \(i\notin J\), \(I_1\,\models \, \langle \varPhi _i, \alpha _i \rangle \), it is clear that the set \(S=\{\langle \varPhi _i, \alpha _i \rangle \in {\mathcal {T}}\cup {\mathcal {A}}~|~i\notin J\}\) is consistent and hence does not contain any supported conflict. This means that for every supported conflict \({\mathcal {C}}_j\) there is a formula \(\langle \varPhi _i,\alpha _i\rangle \in {\mathcal {C}}_j\) such that \(i\in J\), i.e., \(y_i = 1\). It follows that the corresponding constraint \(C_j\) is satisfied by Y.

The objective function of Y is: \(\sum _{i=1}^{n} F(\alpha _i).y_i\) = \(\sum _{i\in J} F(\alpha _i)\) = \(\sum _{i\in J} -ln(1-\alpha _i)\) = \(-ln(\prod _{i\in J} (1-\alpha _i))\) = \(F(1-\prod _{i\in J} (1-\alpha _i))\) = \(F(1 - \pi _{{\mathcal {K}}}(I_1))\) = \(F(\lambda )\).

Now, to show that Y is an optimal solution, suppose for the sake of contradiction that there is a solution \(Z=(z_1, \dots , z_n)\) of \(LP_{{\mathcal {K}}}\) such that \(\sum _{i=1}^{n} F(\alpha _i).z_i < \sum _{i=1}^{n} F(\alpha _i).y_i\). Let \(J'\) be the set of indices of variables put to 1 in Z: \(J'=\{i~|~z_i = 1\}\) and let \(I_2\) be an interpretation that satisfies all the formulas \(\langle \varPhi _i, \alpha _i \rangle \) where \(i\notin J'\). Such an interpretation exists because the set of formulas \(H=\{\langle \varPhi _i,\alpha _i \rangle ~|~i\notin J'\}\) is consistent. Indeed if we suppose that this is not the case, it follows that there is a supported conflict \({\mathcal {C}}_j\subseteq H\) i.e., for all \(\langle \varPhi _i,\alpha _i\rangle \in {\mathcal {C}}_j\) we have \(z_i = 0\). This means that the constraint \(C_j\) is not satisfied by Z which contradicts the fact that Z is a solution of \(LP_{{\mathcal {K}}}\). The possibility degree of \(I_2\) is given by: \(\pi _{{\mathcal {K}}}(I_2)=\prod _{i\in J'} (1-\alpha _i)\). Now, it holds that:

\(\sum _{i=1}^{n} F(\alpha _i).z_i < \sum _{i=1}^{n} F(\alpha _i).y_i\) \(\Leftrightarrow \) \(\sum _{i\in J'} F(\alpha _i) < \sum _{i\in J} F(\alpha _i)\)

\(\Leftrightarrow \) \(\sum _{i\in J'} -ln(1-\alpha _i) < \sum _{i\in J} -ln(1-\alpha _i)\)

\(\Leftrightarrow \) \(-ln(\prod _{i\in J'}(1-\alpha _i)) < -ln(\prod _{i\in J}(1-\alpha _i))\)

\(\Leftrightarrow \) \(ln(\prod _{i\in J'}(1-\alpha _i)) > ln(\prod _{i\in J}(1-\alpha _i))\)

\(\Leftrightarrow \) \(\prod _{i\in J'}(1-\alpha _i) > \prod _{i\in J}(1-\alpha _i)\) \(\Leftrightarrow \) \(\pi _{{\mathcal {K}}} (I_2) > \pi _{{\mathcal {K}}} (I_1)\).

This contradicts the fact that \(\lambda \) is the inconsistency degree of \({\mathcal {K}}\).

\(\Leftarrow \)) Let \(Y=(y_1,\dots ,y_n)\) be an optimal solution of \(LP_{{\mathcal {K}}}\) whose objective function value is \(F(\lambda ) = \sum _{i=1}^{n} F(\alpha _i).y_i\). Let \(J = \{i~|~y_i = 1\}\). It is easy to check that: \(\lambda = 1 - \prod _{i\in J} (1-\alpha _i)\).

Let \(I_1\) be an interpretation that satisfies all the formulas \(\langle \varPhi _i, \alpha _i \rangle \) where \(i\notin J\). Such an interpretation exists because the set of formulas \(H=\{\langle \varPhi _i,\alpha _i \rangle ~|~i\notin J\}\) is consistent. Indeed if we suppose that this is not the case, it follows that there is a supported conflict \({\mathcal {C}}_j\subseteq H\) i.e., for all \(\langle \varPhi _i,\alpha _i\rangle \in {\mathcal {C}}_j\) we have \(y_i = 0\). This means that the constraint \(C_j\) is not satisfied by Y which contradicts the fact that Y is a solution of \(LP_{{\mathcal {K}}}\). The possibility degree of \(I_1\) is given by \(\pi _{{\mathcal {K}}}(I_1)=\prod _{i\in J} (1-\alpha _i)\) and hence, \(\lambda = 1-\pi _{{\mathcal {K}}}(I_1)\). To show that \(\lambda \) is the inconsistency degree of \({\mathcal {K}}\) it suffices to show that \(\pi _{{\mathcal {K}}}(I_1) = \max _{I\in \varOmega } (\pi _{{\mathcal {K}}}(I))\).

Suppose for the sake of contradiction that there is an interpretation \(I_2\) such that \(\pi _{{\mathcal {K}}}(I_2) > \pi _{{\mathcal {K}}}(I_1)\). Let \(J'\) be the set of indices of formulas falsified by \(I_2\): and let \(Z=(z_1,\dots ,z_n)\) be a binary vector such that \(z_i = 1\) if \(i\in J'\) and \(z_i=0\) otherwise.

Let us show that Z satisfies all the constraints of \(LP_{{\mathcal {K}}}\). Since for all \(i\notin J'\), \(I_2\,\models \, \langle \varPhi _i, \alpha _i \rangle \), it is clear that the set \(S=\{\langle \varPhi _i, \alpha _i \rangle \in {\mathcal {T}}\cup {\mathcal {A}}~|~i\notin J'\}\) is consistent, i.e., does not contain any supported conflict. This means that for every supported conflict \({\mathcal {C}}_j\) there is a formula \(\langle \varPhi _i,\alpha _i\rangle \in {\mathcal {C}}_j\) such that \(i\in J\), i.e., \(z_i = 1\). It follows that the corresponding constraint \(C_j\) is satisfied by Y. Now, it holds that:

\(\pi _{{\mathcal {K}}} (I_2) > \pi _{{\mathcal {K}}} (I_1)\) \(\Leftrightarrow \) \(\prod _{i\in J'}(1-\alpha _i) > \prod _{i\in J}(1-\alpha _i)\)

\(\Leftrightarrow \) \(ln(\prod _{i\in J'}(1-\alpha _i)) > ln(\prod _{i\in J}(1-\alpha _i))\) \(\Leftrightarrow \) \(\sum _{i\in J'} ln(1-\alpha _i) > \sum _{i\in J} ln(1-\alpha _i)\)

\(\Leftrightarrow \) \(-\sum _{i\in J'} ln(1-\alpha _i) < -\sum _{i\in J} ln(1-\alpha _i)\)

\(\Leftrightarrow \) \(\sum _{i\in J'} -ln(1-\alpha _i) < \sum _{i\in J} -ln(1-\alpha _i)\)

\(\Leftrightarrow \) \(\sum _{i\in J'} F(\alpha _i) < \sum _{i\in J} F(\alpha _i)\) \(\Leftrightarrow \) \(\sum _{i= 1}^{n} F(\alpha _i).z_i < \sum _{i= 1}^{n} F(\alpha _i).y_i\).

But this contradicts the fact that Y is an optimal solution of \(LP_{{\mathcal {K}}}\)    \(\blacksquare \)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Benferhat, S., Boutouhami, K., Khellaf, F., Nouioua, F. (2017). An Integer 0-1 Linear Programming Approach for Computing Inconsistency Degree in Product-Based Possibilistic DL-Lite. In: Moral, S., Pivert, O., Sánchez, D., Marín, N. (eds) Scalable Uncertainty Management. SUM 2017. Lecture Notes in Computer Science(), vol 10564. Springer, Cham. https://doi.org/10.1007/978-3-319-67582-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67582-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67581-7

  • Online ISBN: 978-3-319-67582-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics