Skip to main content

Tryptophan Catabolism and Cancer Immunotherapy Targeting IDO Mediated Immune Suppression

  • Chapter
  • First Online:
Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1036))

Abstract

Over the last decade, tryptophan catabolism has been firmly established as a powerful mechanism of innate and adaptive immune tolerance. The catabolism of tryptophan is a central pathway maintaining homeostasis by preventing autoimmunity or immunopathology that would result from uncontrolled and overreacting immune responses. This is driven by the key and rate-limiting enzymes indoleamine-2,3-dioxygenase 1 (IDO1) and tryptophan-2,3-dioxygenase 2 (TDO), resulting in local depletion of tryptophan, while tryptophan catabolites accumulate, including kynurenine and its derivatives, depending on the presence of downstream enzymes in the kynurenine pathway. These metabolic modifications result in a local microenvironment that is profoundly immunosuppressive, as a result of various mechanisms whose respective role remains incompletely characterized. Drugs targeting this pathway, specifically IDO1, are already in clinical trials with the aim at reverting cancer-induced immunosuppression. Recent studies have demonstrated favorable pharmacokinetics profiles for first-generation (Indoximod NLG8189) and second-generation IDO1 inhibitors (INCB024360 and NLG919). Targeting tryptophan catabolism in combination with additional methods of therapy may improve efficacy of cancer immunotherapy. These methods include, but are not limited to vaccination, adoptive cellular therapy, checkpoint inhibitor blockade, and cyclooxygenase-2 (COX2) inhibition. Over the last decade, there has been a considerable increase in our understanding of the regulation and downstream mediators of tryptophan metabolism. This detailed understanding will expand opportunities to interfere with the pathway therapeutically on multiple levels. The object of this chapter is to highlight current and past key findings that implicate tryptophan catabolism as an important mediator of cancer immunity and discuss the development of multiple therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lob S, et al. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat Rev Cancer. 2009;9(6):445–52.

    Article  PubMed  Google Scholar 

  2. Moffett JR, Namboodiri MA. Tryptophan and the immune response. Immunol Cell Biol. 2003;81(4):247–65.

    Article  CAS  PubMed  Google Scholar 

  3. Ball HJ, et al. Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene. 2007;396(1):203–13.

    Article  CAS  PubMed  Google Scholar 

  4. Metz R, et al. Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan. Cancer Res. 2007;67(15):7082–7.

    Article  CAS  PubMed  Google Scholar 

  5. Mehler AH, Knox WE. The conversion of tryptophan to kynurenine in liver. II. The enzymatic hydrolysis of formylkynurenine. J Biol Chem. 1950;187(1):431–8.

    CAS  PubMed  Google Scholar 

  6. Knox WE, Mehler AH. The conversion of tryptophan to kynurenine in liver. I. The coupled tryptophan peroxidase-oxidase system forming formylkynurenine. J Biol Chem. 1950;187(1):419–30.

    CAS  PubMed  Google Scholar 

  7. Lob S, et al. IDO1 and IDO2 are expressed in human tumors: levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol Immunother. 2009;58(1):153–7.

    Article  PubMed  Google Scholar 

  8. Thackray SJ, Mowat CG, Chapman SK. Exploring the mechanism of tryptophan 2,3-dioxygenase. Biochem Soc Trans. 2008;36(Pt 6):1120–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ball HJ, et al. Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int J Biochem Cell Biol. 2009;41(3):467–71.

    Article  CAS  PubMed  Google Scholar 

  10. Fatokun AA, Hunt NH, Ball HJ. Indoleamine 2,3-dioxygenase 2 (IDO2) and the kynurenine pathway: characteristics and potential roles in health and disease. Amino Acids. 2013;45(6):1319–29.

    Article  CAS  PubMed  Google Scholar 

  11. Platten M, et al. Cancer Immunotherapy by Targeting IDO1/TDO and Their Downstream Effectors. Front Immunol. 2014;5:673.

    PubMed  Google Scholar 

  12. Kanai M, et al. Tryptophan 2,3-dioxygenase is a key modulator of physiological neurogenesis and anxiety-related behavior in mice. Mol Brain. 2009;2:8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Croitoru-Lamoury J, et al. Interferon-gamma regulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine 2,3 dioxygenase (IDO). PLoS One. 2011;6(2):e14698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kadoya A, et al. Gene structure of human indoleamine 2,3-dioxygenase. Biochem Biophys Res Commun. 1992;189(1):530–6.

    Article  CAS  PubMed  Google Scholar 

  15. Najfeld V, et al. Localization of indoleamine 2,3-dioxygenase gene (INDO) to chromosome 8p12→p11 by fluorescent in situ hybridization. Cytogenet Cell Genet. 1993;64(3–4):231–2.

    Article  CAS  PubMed  Google Scholar 

  16. Brandacher G, Margreiter R, Fuchs D. Implications of IFN-gamma-mediated tryptophan catabolism on solid organ transplantation. Curr Drug Metab. 2007;8(3):273–82.

    Article  CAS  PubMed  Google Scholar 

  17. Mellor AL, Munn DH. Tryptophan catabolism and regulation of adaptive immunity. J Immunol. 2003;170(12):5809–13.

    Article  CAS  PubMed  Google Scholar 

  18. Curti A, et al. The role of indoleamine 2,3-dioxygenase in the induction of immune tolerance: focus on hematology. Blood. 2009;113(11):2394–401.

    Article  CAS  PubMed  Google Scholar 

  19. Uyttenhove C, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 2003;9(10):1269–74.

    Article  CAS  PubMed  Google Scholar 

  20. Grohmann U, et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol. 2002;3(11):1097–101.

    Article  CAS  PubMed  Google Scholar 

  21. Grohmann U, et al. Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nat Med. 2007;13(5):579–86.

    Article  CAS  PubMed  Google Scholar 

  22. Holmgaard RB, et al. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med. 2013;210(7):1389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mellor AL, et al. Cutting edge: CpG oligonucleotides induce splenic CD19+ dendritic cells to acquire potent indoleamine 2,3-dioxygenase-dependent T cell regulatory functions via IFN Type 1 signaling. J Immunol. 2005;175(9):5601–5.

    Article  CAS  PubMed  Google Scholar 

  24. Chen W, et al. The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J Immunol. 2008;181(8):5396–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fallarino F, et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol. 2003;4(12):1206–12.

    Article  CAS  PubMed  Google Scholar 

  26. Yu J, et al. Noncanonical NF-kappaB activation mediates STAT3-stimulated IDO upregulation in myeloid-derived suppressor cells in breast cancer. J Immunol. 2014;193(5):2574–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Munn DH, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281(5380):1191–3.

    Article  CAS  PubMed  Google Scholar 

  28. Mellor AL, Munn DH. Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol Today. 1999;20(10):469–73.

    Article  CAS  PubMed  Google Scholar 

  29. Mellor AL, et al. Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy. Nat Immunol. 2001;2(1):64–8.

    Article  CAS  PubMed  Google Scholar 

  30. Muller AJ, et al. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med. 2005;11(3):312–9.

    Article  CAS  PubMed  Google Scholar 

  31. Munn DH, et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 1999;189(9):1363–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fallarino F, et al. T cell apoptosis by kynurenines. Adv Exp Med Biol. 2003;527:183–90.

    Article  CAS  PubMed  Google Scholar 

  33. Mellor AL, et al. Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses. J Immunol. 2002;168(8):3771–6.

    Article  CAS  PubMed  Google Scholar 

  34. McGaha TL, et al. Amino acid catabolism: a pivotal regulator of innate and adaptive immunity. Immunol Rev. 2012;249(1):135–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ravishankar B, et al. Tolerance to apoptotic cells is regulated by indoleamine 2,3-dioxygenase. Proc Natl Acad Sci U S A. 2012;109(10):3909–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Manlapat AK, et al. Cell-autonomous control of interferon type I expression by indoleamine 2,3-dioxygenase in regulatory CD19+ dendritic cells. Eur J Immunol. 2007;37(4):1064–71.

    Article  CAS  PubMed  Google Scholar 

  37. Liu H, et al. GCN2-dependent metabolic stress is essential for endotoxemic cytokine induction and pathology. Mol Cell Biol. 2014;34(3):428–38.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fallarino F, et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol. 2006;176(11):6752–61.

    Article  CAS  PubMed  Google Scholar 

  39. Munn DH, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 2005;22(5):633–42.

    Article  CAS  PubMed  Google Scholar 

  40. Sharma MD, et al. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest. 2007;117(9):2570–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Frumento G, et al. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med. 2002;196(4):459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hayashi T, et al. 3-Hydroxyanthranilic acid inhibits PDK1 activation and suppresses experimental asthma by inducing T cell apoptosis. Proc Natl Acad Sci U S A. 2007;104(47):18619–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Opitz CA, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011;478(7368):197–203.

    Article  CAS  PubMed  Google Scholar 

  44. Mimura J, Fujii-Kuriyama Y. Functional role of AhR in the expression of toxic effects by TCDD. Biochim Biophys Acta. 2003;1619(3):263–8.

    Article  CAS  PubMed  Google Scholar 

  45. Prendergast GC. Cancer: Why tumours eat tryptophan. Nature. 2011;478(7368):192–4.

    Article  CAS  PubMed  Google Scholar 

  46. Mezrich JD, et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol. 2010;185(6):3190–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pilotte L, et al. Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc Natl Acad Sci U S A. 2012;109(7):2497–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kimura A, et al. Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc Natl Acad Sci U S A. 2008;105(28):9721–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Veldhoen M, et al. Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J Exp Med. 2009;206(1):43–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Quintana FJ, et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature. 2008;453(7191):65–71.

    Article  CAS  PubMed  Google Scholar 

  51. Veldhoen M, et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature. 2008;453(7191):106–9.

    Article  CAS  PubMed  Google Scholar 

  52. Sato E, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A. 2005;102(51):18538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Munn DH, Mellor AL. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest. 2007;117(5):1147–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Platten M, Wick W, Van den Eynde BJ. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res. 2012;72(21):5435–40.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang L, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203–13.

    Article  CAS  PubMed  Google Scholar 

  56. Callahan MJ, et al. Increased HLA-DMB expression in the tumor epithelium is associated with increased CTL infiltration and improved prognosis in advanced-stage serous ovarian cancer. Clin Cancer Res. 2008;14(23):7667–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hwang WT, et al. Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysis. Gynecol Oncol. 2012;124(2):192–8.

    Article  PubMed  Google Scholar 

  58. Hamanishi J, et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A. 2007;104(9):3360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tomsova M, et al. Prognostic significance of CD3+ tumor-infiltrating lymphocytes in ovarian carcinoma. Gynecol Oncol. 2008;108(2):415–20.

    Article  CAS  PubMed  Google Scholar 

  60. Matsuzaki J, et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci U S A. 2010;107(17):7875–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cady SG, Sono M. 1-Methyl-DL-tryptophan, beta-(3-benzofuranyl)-DL-alanine (the oxygen analog of tryptophan), and beta-[3-benzo(b)thienyl]-DL-alanine (the sulfur analog of tryptophan) are competitive inhibitors for indoleamine 2,3-dioxygenase. Arch Biochem Biophys. 1991;291(2):326–33.

    Article  CAS  PubMed  Google Scholar 

  62. Balachandran VP, et al. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat Med. 2011;17(9):1094–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Basu GD, et al. Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO. J Immunol. 2006;177(4):2391–402.

    Article  CAS  PubMed  Google Scholar 

  64. Lee SY, et al. The immune tolerance of cancer is mediated by IDO that is inhibited by COX-2 inhibitors through regulatory T cells. J Immunother. 2009;32(1):22–8.

    Article  CAS  PubMed  Google Scholar 

  65. Sorensen RB, et al. The immune system strikes back: cellular immune responses against indoleamine 2,3-dioxygenase. PLoS One. 2009;4(9):e6910.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Iversen TZ, et al. Long-lasting disease stabilization in the absence of toxicity in metastatic lung cancer patients vaccinated with an epitope derived from indoleamine 2,3 dioxygenase. Clin Cancer Res. 2014;20(1):221–32.

    Article  CAS  PubMed  Google Scholar 

  67. Grohmann U, et al. IL-6 inhibits the tolerogenic function of CD8 alpha+ dendritic cells expressing indoleamine 2,3-dioxygenase. J Immunol. 2001;167(2):708–14.

    Article  CAS  PubMed  Google Scholar 

  68. Grohmann U, et al. CD40 ligation ablates the tolerogenic potential of lymphoid dendritic cells. J Immunol. 2001;166(1):277–83.

    Article  CAS  PubMed  Google Scholar 

  69. Hwu P, et al. Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol. 2000;164(7):3596–9.

    Article  CAS  PubMed  Google Scholar 

  70. Munn DH, et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science. 2002;297(5588):1867–70.

    Article  CAS  PubMed  Google Scholar 

  71. Mellor AL, et al. Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J Immunol. 2003;171(4):1652–5.

    Article  CAS  PubMed  Google Scholar 

  72. Munn DH. Indoleamine 2,3-dioxygenase, tumor-induced tolerance and counter-regulation. Curr Opin Immunol. 2006;18(2):220–5.

    Article  CAS  PubMed  Google Scholar 

  73. Lob S, et al. Levo- but not dextro-1-methyl tryptophan abrogates the IDO activity of human dendritic cells. Blood. 2008;111(4):2152–4.

    Article  CAS  PubMed  Google Scholar 

  74. Qian F, et al. Efficacy of levo-1-methyl tryptophan and dextro-1-methyl tryptophan in reversing indoleamine-2,3-dioxygenase-mediated arrest of T-cell proliferation in human epithelial ovarian cancer. Cancer Res. 2009;69(13):5498–504.

    Article  CAS  PubMed  Google Scholar 

  75. Qian F, et al. Effects of 1-methyltryptophan stereoisomers on IDO2 enzyme activity and IDO2-mediated arrest of human T cell proliferation. Cancer Immunol Immunother. 2012;61(11):2013–20.

    Article  CAS  PubMed  Google Scholar 

  76. Yuasa HJ, et al. 1-L-methyltryptophan is a more effective inhibitor of vertebrate IDO2 enzymes than 1-D-methyltryptophan. Comp Biochem Physiol B Biochem Mol Biol. 2010;157(1):10–5.

    Article  PubMed  Google Scholar 

  77. Travers MT, et al. Indoleamine 2,3-dioxygenase activity and L-tryptophan transport in human breast cancer cells. Biochim Biophys Acta. 2004;1661(1):106–12.

    Article  CAS  PubMed  Google Scholar 

  78. Seymour RL, et al. A high-affinity, tryptophan-selective amino acid transport system in human macrophages. J Leukoc Biol. 2006;80(6):1320–7.

    Article  CAS  PubMed  Google Scholar 

  79. Metz R, et al. IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: A novel IDO effector pathway targeted by D-1-methyl-tryptophan. Oncoimmunology. 2012;1(9):1460–8.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Liu X, et al. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood. 2010;115(17):3520–30.

    Article  CAS  PubMed  Google Scholar 

  81. Soliman HH, et al. A first in man phase I trial of the oral immunomodulator, indoximod, combined with docetaxel in patients with metastatic solid tumors. Oncotarget. 2014;5(18):8136–46.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Soliman HH, et al. A phase I study of indoximod in patients with advanced malignancies. Oncotarget. 2016;7(16):22928–38.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Vacchelli E, et al. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology. 2014;3(10):e957994.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Roswell Park Alliance Foundation, NIH 1R01CA158318-01A1 and RPCI-UPCI Ovarian Cancer SPORE P50CA159981-01A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunle Odunsi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amobi, A., Qian, F., Lugade, A.A., Odunsi, K. (2017). Tryptophan Catabolism and Cancer Immunotherapy Targeting IDO Mediated Immune Suppression. In: Kalinski, P. (eds) Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy. Advances in Experimental Medicine and Biology, vol 1036. Springer, Cham. https://doi.org/10.1007/978-3-319-67577-0_9

Download citation

Publish with us

Policies and ethics