Skip to main content

Exosomes in Cancer: Another Mechanism of Tumor-Induced Immune Suppression

  • Chapter
  • First Online:
Book cover Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1036))

Abstract

Exosomes are the smallest extracellular vesicles (EV) produced under physiological and pathological conditions by all cells and present in all body fluids. They are critical components of the intercellular communication network. Tumor cells release exosomes which are enriched in immunosuppressive molecules as well as biologically-active soluble factors and enzymes. Tumor-derived exosomes (TEX) interact with immune effector cells in the tumor microenvironment and in the circulation, deliver negative signals to these cells and interfere with their anti-tumor functions. By suppressing functions of immune effector cells, TEX promote tumor progression and facilitate tumor escape from the immune system. Thus, TEX can be viewed as immune checkpoint inhibitors. Silencing of TEX-mediated immune inhibition without disrupting the physiologically important cellular communication networks represents a considerable challenge. Current efforts are directed at achieving a better understanding of the role exosomes play in cancer progression and/or outcome and of molecular/genetic mechanisms responsible for immunoinhibitory activity of TEX.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Whiteside TL, Demaria S, Rodriguez-Ruiz ME, Zarour HM, Melero I. Emerging opportunities and challenges in cancer immunotherapy. Clin Cancer Res. 2016;22(8):1845–55. https://doi.org/10.1158/1078-0432.CCR-16-0049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smyth MJ, Ngiow SF, Ribas A, Teng MW. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol. 2016;13(3):143–58. https://doi.org/10.1038/nrclinonc.2015.209.

    Article  CAS  PubMed  Google Scholar 

  3. Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res. 2015;21(4):687–92. https://doi.org/10.1158/1078-0432.CCR-14-1860.

    Article  CAS  PubMed  Google Scholar 

  4. Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol. 2016;36(3):301–12. https://doi.org/10.1007/s10571-016-0366-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2013;2. https://doi.org/10.3402/jev.v2i0.20389.

  6. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83. https://doi.org/10.1083/jcb.201211138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Keller S, Ridinger J, Rupp AK, Janssen JW, Altevogt P. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med. 2011;9:86. https://doi.org/10.1186/1479-5876-9-86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 2012;64(3):676–705. https://doi.org/10.1124/pr.112.005983.

    Article  PubMed  Google Scholar 

  9. Boyiadzis M, Whiteside TL. Information transfer by exosomes: a new frontier in hematologic malignancies. Blood Rev. 2015;29(5):281–90. https://doi.org/10.1016/j.blre.2015.01.004.

    Article  CAS  PubMed  Google Scholar 

  10. Whiteside TL. Exosomes and tumor-mediated immune suppression. J Clin Invest. 2016;126(4):1216–23. https://doi.org/10.1172/JCI81136.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3:24641. https://doi.org/10.3402/jev.v3.24641.

    Article  Google Scholar 

  12. Whiteside TL. Tumor-derived exosomes and their role in tumor-induced immune suppression. Vaccine. 2016;4(4):35.

    Article  Google Scholar 

  13. Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126(Pt 24):5553–65. https://doi.org/10.1242/jcs.128868.

    Article  CAS  PubMed  Google Scholar 

  14. Lo Cicero A, Stahl PD, Raposo G. Extracellular vesicles shuffling intercellular messages: for good or for bad. Curr Opin Cell Biol. 2015;35:69–77. https://doi.org/10.1016/j.ceb.2015.04.013.

    Article  CAS  PubMed  Google Scholar 

  15. Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25(6):364–72. https://doi.org/10.1016/j.tcb.2015.01.004.

    Article  CAS  PubMed  Google Scholar 

  16. Atay S, Godwin AK. Tumor-derived exosomes: A message delivery system for tumor progression. Commun Integr Biol. 2014;7(1):e28231. https://doi.org/10.4161/cib.28231.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Whiteside TL. Tumor-derived exosomes and their role in cancer progression. Adv Clin Chem. 2016;74:103–41. https://doi.org/10.1016/bs.acc.2015.12.005.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kunigelis KE, Graner MW. The dichotomy of tumor exosomes (TEX) in cancer immunity: is it all in the ConTEXt? Vaccines (Basel). 2015;3(4):1019–51. https://doi.org/10.3390/vaccines3041019.

    Article  Google Scholar 

  19. Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 2014;14(3):195–208. https://doi.org/10.1038/nri3622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Muller L, Simms P, Hong CS, Nishimura MI, Jackson EK, Watkins SC, et al. Human tumor-derived exosomes (TEX) regulate Treg functions via cell surface signaling rather than uptake mechanisms. OncoImmunology. 2016. https://doi.org/10.1080/2162402X.2016.1261243.

  21. Muller L, Mitsuhashi M, Simms P, Gooding WE, Whiteside TL. Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets. Sci Rep. 2016;6:20254. https://doi.org/10.1038/srep20254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL. Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol. 2009;183(6):3720–30. https://doi.org/10.4049/jimmunol.0900970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clayton A, Mitchell JP, Court J, Mason MD, Tabi Z. Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res. 2007;67(15):7458–66. https://doi.org/10.1158/0008-5472.CAN-06-3456.

    Article  CAS  PubMed  Google Scholar 

  24. Taylor DD, Gercel-Taylor C, Lyons KS, Stanson J, Whiteside TL. T-cell apoptosis and suppression of T-cell receptor/CD3-zeta by Fas ligand-containing membrane vesicles shed from ovarian tumors. Clin Cancer Res. 2003;9(14):5113–9.

    CAS  PubMed  Google Scholar 

  25. Whiteside TL. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc Trans. 2013;41(1):245–51. https://doi.org/10.1042/BST20120265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hong CS, Funk S, Muller L, Boyiadzis M, Whiteside TL. Isolation of biologically active and morphologically intact exosomes from plasma of patients with cancer. J Extracell Vesicles. 2016;5:29289. https://doi.org/10.3402/jev.v5.29289.

    Article  PubMed  Google Scholar 

  27. Czystowska M, Han J, Szczepanski MJ, Szajnik M, Quadrini K, Brandwein H, et al. IRX-2, a novel immunotherapeutic, protects human T cells from tumor-induced cell death. Cell Death Differ. 2009;16(5):708–18. https://doi.org/10.1038/cdd.2008.197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schuler PJ, Saze Z, Hong CS, Muller L, Gillespie DG, Cheng D, et al. Human CD4(+) CD39(+) regulatory T cells produce adenosine upon co-expression of surface CD73 or contact with CD73(+) exosomes or CD73(+) cells. Clin Exp Immunol. 2014;177(2):531–43. https://doi.org/10.1111/cei.12354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim JW, Wieckowski E, Taylor DD, Reichert TE, Watkins S, Whiteside TL. Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res. 2005;11(3):1010–20.

    CAS  PubMed  Google Scholar 

  30. Valenti R, Huber V, Iero M, Filipazzi P, Parmiani G, Rivoltini L. Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res. 2007;67(7):2912–5. https://doi.org/10.1158/0008-5472.CAN-07-0520.

    Article  CAS  PubMed  Google Scholar 

  31. Yu S, Liu C, Su K, Wang J, Liu Y, Zhang L, et al. Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J Immunol. 2007;178(11):6867–75.

    Article  CAS  PubMed  Google Scholar 

  32. Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 2012;151(7):1542–56. https://doi.org/10.1016/j.cell.2012.11.024.

    Article  CAS  PubMed  Google Scholar 

  33. Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, Whiteside TL. Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS One. 2010;5(7):e11469. https://doi.org/10.1371/journal.pone.0011469.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J, et al. Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer. 2009;124(11):2621–33. https://doi.org/10.1002/ijc.24249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Battke C, Ruiss R, Welsch U, Wimberger P, Lang S, Jochum S, et al. Tumour exosomes inhibit binding of tumour-reactive antibodies to tumour cells and reduce ADCC. Cancer Immunol Immunother. 2011;60(5):639–48. https://doi.org/10.1007/s00262-011-0979-5.

    Article  CAS  PubMed  Google Scholar 

  36. Szczepanski MJ, Szajnik M, Welsh A, Whiteside TL, Boyiadzis M. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-beta1. Haematologica. 2011;96(9):1302–9. https://doi.org/10.3324/haematol.2010.039743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hong CS, Muller L, Whiteside TL, Boyiadzis M. Plasma exosomes as markers of therapeutic response in patients with acute myeloid leukemia. Front Immunol. 2014;5:160. https://doi.org/10.3389/fimmu.2014.00160.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Figueiro F, Muller L, Funk S, Jackson EK, Battastini AM, Whiteside TL. Phenotypic and functional characteristics of CD39high human regulatory B cells (Breg). Oncoimmunology. 2016;5(2):e1082703. https://doi.org/10.1080/2162402X.2015.1082703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bretz NP, Ridinger J, Rupp AK, Rimbach K, Keller S, Rupp C, et al. Body fluid exosomes promote secretion of inflammatory cytokines in monocytic cells via toll-like receptor signaling. J Biol Chem. 2013;288(51):36691–702. https://doi.org/10.1074/jbc.M113.512806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu Y, Xiang X, Zhuang X, Zhang S, Liu C, Cheng Z, et al. Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. Am J Pathol. 2010;176(5):2490–9. https://doi.org/10.2353/ajpath.2010.090777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cai J, Wu G, Jose PA, Zeng C. Functional transferred DNA within extracellular vesicles. Exp Cell Res. 2016;349(1):179–83. https://doi.org/10.1016/j.yexcr.2016.10.012.

    Article  CAS  PubMed  Google Scholar 

  42. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470–6. https://doi.org/10.1038/ncb1800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ruan K, Fang X, Ouyang G. MicroRNAs: novel regulators in the hallmarks of human cancer. Cancer Lett. 2009;285(2):116–26. https://doi.org/10.1016/j.canlet.2009.04.031.

    Article  CAS  PubMed  Google Scholar 

  44. Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69. https://doi.org/10.1038/nrc1840.

    Article  CAS  PubMed  Google Scholar 

  45. Ye SB, Li ZL, Luo DH, Huang BJ, Chen YS, Zhang XS, et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget. 2014;5(14):5439–52.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Whiteside TL. The potential of tumor-derived exosomes for noninvasive cancer monitoring. Expert Rev Mol Diagn. 2015;15(10):1293–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sato-Kuwabara Y, Melo SA, Soares FA, Calin GA. The fusion of two worlds: non-coding RNAs and extracellular vesicles—diagnostic and therapeutic implications (review). Int J Oncol. 2015;46(1):17–27. https://doi.org/10.3892/ijo.2014.2712.

    Article  CAS  PubMed  Google Scholar 

  48. Carissimi C, Carucci N, Colombo T, Piconese S, Azzalin G, Cipolletta E, et al. miR-21 is a negative modulator of T-cell activation. Biochimie. 2014;107 Pt B:319–26. https://doi.org/10.1016/j.biochi.2014.09.021.

    Article  PubMed  Google Scholar 

  49. Hong CS, Muller L, Boyiadzis M, Whiteside TL. Isolation and characterization of CD34+ blast-derived exosomes in acute myeloid leukemia. PLoS One. 2014;9(8):e103310. https://doi.org/10.1371/journal.pone.0103310.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Funk S, Floros T, Hong CS, Jackson EK, Lang S, Whiteside TL. Suppression of lymphocyte functions by plasma exosomes correlates with disease activity in patients with head and neck cancer. Clin Cancer Res. 2017;23(16):4843–54.

    Article  Google Scholar 

Download references

Acknowledgments

Supported in part by NIH grants RO-1 CA 168628 and R-21 CA205644 to TLW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa L. Whiteside .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Whiteside, T.L. (2017). Exosomes in Cancer: Another Mechanism of Tumor-Induced Immune Suppression. In: Kalinski, P. (eds) Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy. Advances in Experimental Medicine and Biology, vol 1036. Springer, Cham. https://doi.org/10.1007/978-3-319-67577-0_6

Download citation

Publish with us

Policies and ethics