Skip to main content

Dynamic Respiratory Motion Estimation Using Patch-Based Kernel-PCA Priors for Lung Cancer Radiotherapy

  • Conference paper
  • First Online:
  • 1393 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10555))

Abstract

In traditional radiation therapy of lung cancer, the planned target volume (PTV) is delineated from the average or a single phase of the planning-4D-CT, which is then registered to the intra-procedural 3D-CT for delivery of radiation dose. Because of respiratory motion, the radiation needs to be gated so that the PTV covers the tumor. 4D planning deals with multiple breathing phases, however, since the breathing patterns during treatment can change, there are matching discrepancies between the planned 4D volumes and the actual tumor shape and position. Recent works showed that it is promising to dynamically estimate the lung motion from chest motion. In this paper, we propose a patch-based Kernel-PCA model for estimating lung motion from the chest and upper abdomen motion. First, a statistical model is established from the 4D motion fields of a population. Then, the lung motion of a patient is estimated dynamically based on the patient’s 4D-CT image and chest and upper abdomen motion, using population’s statistical model as prior knowledge. This lung motion estimation algorithm aims to adapt the patient’s planning 4D-CT to his/her current breathing status dynamically during treatment so that the location and shape of the lung tumor can be precisely tracked. Thus, it reduces possible damage to surrounding normal tissue, reduces side-effects, and improves the efficiency of radiation therapy. In experiments, we used the leave-one-out method to evaluate the estimation accuracy from images of 51 male subjects and compared the linear and nonlinear estimation scenarios. The results showed smaller lung field matching errors for the proposed patch-based nonlinear estimation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tachibana, H., Sawant, A.: Four-dimensional planning for motion synchronized dose delivery in lung stereotactic body radiation therapy. Radiother. Oncol. 119, 467–472 (2016)

    Article  Google Scholar 

  2. Wilms, M., Werner, R., Blendowski, M., Ortmuller, J., Handels, H.: Simulation of range imaging-based estimation of respiratory lung motion. Influence of noise, signal dimensionality and sampling patterns. Methods Inf. Med. 53, 257–263 (2014)

    Article  Google Scholar 

  3. Rottmann, J., Keall, P., Berbeco, R.: Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery. Med. Phys. 40, 091713 (2013)

    Article  Google Scholar 

  4. Dong, B., Graves, Y.J., Jia, X., Jiang, S.B.: Optimal surface marker locations for tumor motion estimation in lung cancer radiotherapy. Phys. Med. Biol. 57, 8201–8215 (2012)

    Article  Google Scholar 

  5. Liu, X., Saboo, R.R., Pizer, S.M., Mageras, G.S.: A shape-navigated image deformation model for 4d lung respiratory motion estimation. In: Proceedings of IEEE International Symposium on Biomedical Imaging 2009, pp. 875–878 (2009)

    Google Scholar 

  6. Takao, S., Miyamoto, N., Matsuura, T., Onimaru, R., Katoh, N., Inoue, T., Sutherland, K.L., Suzuki, R., Shirato, H., Shimizu, S.: Intrafractional baseline shift or drift of lung tumor motion during gated radiation therapy with a real-time tumor-tracking system. Int. J. Radiat. Oncol. Biol. Phys. 94, 172–180 (2016)

    Article  Google Scholar 

  7. Ehrhardt, J., Werner, R., Schmidt-Richberg, A., Handels, H.: Statistical modeling of 4D respiratory lung motion using diffeomorphic image registration. IEEE Trans. Med. Imaging 30, 251–265 (2011)

    Article  Google Scholar 

  8. Han, D., Bayouth, J., Song, Q., Bhatia, S., Sonka, M., Wu, X.: Feature guided motion artifact reduction with structure-awareness in 4D CT images. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1057–1064. IEEE (2011)

    Google Scholar 

  9. He, T., Xue, Z., Yu, N., Nitsch, P.L., Teh, B.S., Wong, S.T.: Estimating dynamic lung images from high-dimension chest surface motion using 4D statistical model. Med. Image Comput. Comput. Assist. Interv. 17, 138–145 (2014)

    Google Scholar 

  10. Klinder, T., Lorenz, C., Ostermann, J.: Prediction framework for statistical respiratory motion modeling. Med. Image Comput. Comput. Assist. Interv. 13, 327–334 (2010)

    Google Scholar 

  11. Lu, W., Song, J.H., Christensen, G.E., Parikh, P.J., Zhao, T., Hubenschmidt, J.P., Bradley, J.D., Low, D.A.: Evaluating lung motion variations in repeated 4D CT studies using inverse consistent image registration. Int. J. Radiat. Oncol. Biol. Phys. 66, S606–S607 (2006)

    Article  Google Scholar 

  12. Santelli, C., Nezafat, R., Goddu, B., Manning, W.J., Smink, J., Kozerke, S., Peters, D.C.: Respiratory bellows revisited for motion compensation: preliminary experience for cardiovascular MR. Magn. Reson. Med. 65, 1098–1103 (2011)

    Article  Google Scholar 

  13. Vandemeulebroucke, J., Rit, S., Kybic, J., Clarysse, P., Sarrut, D.: Spatiotemporal motion estimation for respiratory-correlated imaging of the lungs. Med. Phys. 38, 166–178 (2011)

    Article  Google Scholar 

  14. Wu, G., Wang, Q., Lian, J., Shen, D.: Estimating the 4D respiratory lung motion by spatiotemporal registration and building super-resolution image. Med. Image Comput. Comput. Assist. Interv. 14, 532–539 (2011)

    Google Scholar 

  15. Zeng, R., Fessler, J.A., Balter, J.M., Balter, P.A.: Iterative sorting for 4DCT images based on internal anatomy motion. In: 4th IEEE International Symposium on Biomedical Imaging, pp. 744–747. IEEE (2007)

    Google Scholar 

  16. Yang, D., Lu, W., Low, D.A., Deasy, J.O., Hope, A.J., El Naqa, I.: 4D-CT motion estimation using deformable image registration and 5D respiratory motion modeling. Med. Phys. 35, 4577–4590 (2008)

    Article  Google Scholar 

  17. Lu, B., Chen, Y., Park, J.C., Fan, Q., Kahler, D., Liu, C.: A method of surface marker location optimization for tumor motion estimation in lung stereotactic body radiation therapy. Med. Phys. 42, 244–253 (2015)

    Article  Google Scholar 

  18. Wilms, M., Werner, R., Yamamoto, T., Handels, H., Ehrhardt, J.: Subpopulation-based correspondence modelling for improved respiratory motion estimation in the presence of inter-fraction motion variations. Phys. Med. Biol. 62, 5823–5839 (2017)

    Article  Google Scholar 

  19. Heinrich, M.P., Jenkinson, M., Papież, B.W., Glesson, F.V., Brady, S.M., Schnabel, J.A.: Edge- and detail-preserving sparse image representations for deformable registration of chest MRI and CT volumes. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 463–474. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38868-2_39

    Chapter  Google Scholar 

  20. Papież, B.W., Franklin, J., Heinrich, M.P., Gleeson, F.V., Schnabel, J.A.: Liver motion estimation via locally adaptive over-segmentation regularization. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 427–434. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_51

    Chapter  Google Scholar 

  21. Xue, Z., Pino, R., Teh, B.: Estimating lung respiratory motion using combined global and local statistical models. In: Wu, G., Coupé, P., Zhan, Y., Munsell, B.C., Rueckert, D. (eds.) Patch-MI 2016. LNCS, vol. 9993, pp. 133–140. Springer, Cham (2016). doi:10.1007/978-3-319-47118-1_17

    Chapter  Google Scholar 

  22. Schölkopf, B., Mika, S., Smola, A., Rätsch, G., Müller, K.-R.: Kernel PCA pattern reconstruction via approximate pre-images. In: Niklasson, L., Bodén, M., Ziemke, T. (eds.) ICANN 98, pp. 147–152. Springer, London (1998)

    Chapter  Google Scholar 

  23. Twining, C.J., Taylor, C.J.: Kernel principal component analysis and the construction of non-linear active shape models. In: BMVC, pp. 23–32. (2001)

    Google Scholar 

  24. Davatzikos, C., Tao, X., Shen, D.: Hierarchical active shape models, using the wavelet transform. IEEE Trans. Med. Imaging 22, 414–423 (2003)

    Article  Google Scholar 

  25. Gerig, G., Jomier, M., Chakos, M.: Valmet: a new validation tool for assessing and improving 3D object segmentation. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 516–523. Springer, Heidelberg (2001). doi:10.1007/3-540-45468-3_62

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

He, T., Pino, R., Teh, B., Wong, S., Xue, Z. (2017). Dynamic Respiratory Motion Estimation Using Patch-Based Kernel-PCA Priors for Lung Cancer Radiotherapy. In: Cardoso, M., et al. Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment. RAMBO CMMI SWITCH 2017 2017 2017. Lecture Notes in Computer Science(), vol 10555. Springer, Cham. https://doi.org/10.1007/978-3-319-67564-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67564-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67563-3

  • Online ISBN: 978-3-319-67564-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics