Skip to main content

Assessing Reorganisation of Functional Connectivity in the Infant Brain

  • Conference paper
  • First Online:
  • 2257 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10554))

Abstract

As maturation of neural networks continues throughout childhood, brain lesions insulting immature networks have different impact on brain function than lesions obtained after full network maturation. Thus, longitudinal studies and analysis of spatial and temporal brain signal correlations are a key component to get a deeper understanding of individual maturation processes, their interaction and their link to cognition. Here, we assess the connectivity pattern deviation of developing resting state networks after ischaemic stroke of children between 7 and 17 years. We propose a method to derive a reorganisational score to detect target regions for overtaking affected functional regions within a stroke location. The evaluation is performed using rs-fMRI data of 16 control subjects and 16 stroke patients. The developing functional connectivity affected by ischaemic stroke exhibits significant differences to the control cohort. This suggests an influence of stroke location and developmental stage on regenerating processes and the reorganisational patterns.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://surfer.nmr.mgh.harvard.edu [accessed 16th May 2017].

  2. 2.

    http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL [accessed 16th May 2017].

References

  1. Altman, N.R., Bernal, B.: Clinical applications of functional magnetic resonance imaging. Pediatr. Radiol. 45(3), 382–396 (2015)

    Article  Google Scholar 

  2. Anderson, V., Spencer-Smith, M., Wood, A.: Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain J. Neurol. 134(Pt 8), 2197–221 (2011)

    Article  Google Scholar 

  3. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)

    Article  Google Scholar 

  4. Casey, B., Tottenham, N., Liston, C., Durston, S.: Imaging the developing brain: what have we learned about cognitive development? TiCS 9(3), 104–110 (2005)

    Google Scholar 

  5. Fair, D.A., Cohen, A.L., Power, J.D., Dosenbach, N.U.F., Church, J.A., Miezin, F.M., Schlaggar, B.L., Petersen, S.E.: Functional brain networks develop from a “local to distributed” organization. PLoS Comput. Biol. 5(5), e1000381 (2009)

    Article  MathSciNet  Google Scholar 

  6. Fischl, B.: FreeSurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  7. Fischl, B., Sereno, M.I., Tootell, R.B., Dale, A.M.: High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8(4), 272–84 (1999)

    Article  Google Scholar 

  8. Gao, W., Zhu, H., Giovanello, K.S., Smith, J.K., Shen, D., Gilmore, J.H., Lin, W.: Evidence on the emergence of the brain’s default network from 2-week-old to 2-year-old healthy pediatric subjects. Proc. Natl. Acad. Sci. U.S.A. 106(16), 6790–6795 (2009)

    Article  Google Scholar 

  9. Huttenlocher, P.R.: Neural Plasticity: The Effects of Environment on the Development of the Cerebral Cortex. Harvard University Press, Cambridge (2002)

    Google Scholar 

  10. Ius, T., Angelini, E., Thiebaut de Schotten, M., Mandonnet, E., Duffau, H.: Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a minimal common brain. NeuroImage 56(3), 992–1000 (2011)

    Article  Google Scholar 

  11. Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M.: FSL. NeuroImage 62(2), 782–90 (2012)

    Article  Google Scholar 

  12. Johnston, M.V.: Plasticity in the developing brain: implications for rehabilitation. Dev. Disabil. Res. Rev. 15(2), 94–101 (2009)

    Article  Google Scholar 

  13. Kornfeld, S., Delgado Rodríguez, J.A., Everts, R., Kaelin-Lang, A., Wiest, R., Weisstanner, C., Mordasini, P., Steinlin, M., Grunt, S.: Cortical reorganisation of cerebral networks after childhood stroke: impact on outcome. BMC Neurol. 15(1), 90 (2015)

    Article  Google Scholar 

  14. La Corte, V., Sperduti, M., Malherbe, C., Vialatte, F., Lion, S., Gallarda, T., Oppenheim, C., Piolino, P.: Cognitive decline and reorganization of functional connectivity in healthy aging: the pivotal role of the salience network in the prediction of age and cognitive performances. Front. Aging Neurosci. 8, 204 (2016)

    Article  Google Scholar 

  15. Lynch, J.K., Han, C.J.: Pediatric stroke - what do we know and what do we need to know? Semin. Neurol. 25(4), 410–423 (2005)

    Article  Google Scholar 

  16. Mueller, S., Wang, D., Fox, M.D., Yeo, B.T.T., Sepulcre, J., Sabuncu, M.R., Shafee, R., Lu, J., Liu, H.: Individual variability in functional connectivity architecture of the human brain. Neuron 77(3), 586–595 (2013)

    Article  Google Scholar 

  17. Power, J.D., Fair, D.A., Schlaggar, B.L., Petersen, S.E.: The development of human functional brain networks. Neuron 67(5), 735–48 (2010)

    Article  Google Scholar 

  18. Sepulcre, J., Liu, H., Talukdar, T., Martincorena, I., Thomas Yeo, B.T., Buckner, R.L.: The organization of local and distant functional connectivity in the human brain. PLoS Comput. Biol. 6(6), 1–15 (2010)

    Article  MathSciNet  Google Scholar 

  19. Tsze, D.S., Valente, J.H.: Pediatric stroke: a review. Emerg. Med. Int. 2011, 734506 (2011)

    Article  Google Scholar 

  20. Yeo, B.T.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., Roffman, J.L., Smoller, J.W., Zöllei, L., Polimeni, J.R., Fischl, B., Liu, H., Buckner, R.L.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106(3), 1125–65 (2011)

    Article  Google Scholar 

  21. Zilles, K., Palomero-Gallagher, N., Amunts, K.: Development of cortical folding during evolution and ontogeny. Trends Neurosci. 36(5), 275–284 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

This work was co-funded by the Oesterreichische Nationalbank (Anniversary Fund, project number 15356), by the FWF under KLI 544-B27 and I 2714-B31, by the European Commision FP7-PEOPLE-2013-IAPP 610872 and by ZIT Life Sciences 2014 (1207843).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roxane Licandro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Licandro, R. et al. (2017). Assessing Reorganisation of Functional Connectivity in the Infant Brain. In: Cardoso, M., et al. Fetal, Infant and Ophthalmic Medical Image Analysis. OMIA FIFI 2017 2017. Lecture Notes in Computer Science(), vol 10554. Springer, Cham. https://doi.org/10.1007/978-3-319-67561-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67561-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67560-2

  • Online ISBN: 978-3-319-67561-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics