Skip to main content

CNNs Enable Accurate and Fast Segmentation of Drusen in Optical Coherence Tomography

  • Conference paper
  • First Online:
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (DLMIA 2017, ML-CDS 2017)

Abstract

Optical coherence tomography (OCT) is used to diagnose and track progression of age-related macular degeneration (AMD). Drusen, which appear as bumps between Bruch’s membrane (BM) and the retinal pigment epithelium (RPE) layer, are among the most important biomarkers for staging AMD. In this work, we develop and compare three automated methods for Drusen segmentation based on the U-Net convolutional neural network architecture. By cross-validating on more than 50, 000 annotated images, we demonstrate that all three approaches achieve much better accuracy than a current state-of-the-art method. Highest accuracy is achieved when the CNN is trained to segment the BM and RPE, and the drusen are detected by combining shortest path finding with polynomial fitting in a post-process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The selective en face projection relies on an estimate of the RPE layer, which the direct drusen segmentation does not provide. Thus, only those steps of the FPE that do not rely on the en face could be applied in case of the direct segmentation.

References

  1. Abràmoff, M.D., Garvin, M.K., Sonka, M.: Retinal imaging and image analysis. IEEE Rev. Biomed. Eng. 3, 169–208 (2010)

    Article  Google Scholar 

  2. Chen, Q., Leng, T., Zheng, L., Kutzscher, L., Ma, J., de Sisternes, L., Rubin, D.L.: Automated drusen segmentation and quantification in SD-OCT images. Med. Image Anal. 17(8), 1058–1072 (2013)

    Article  Google Scholar 

  3. Chiu, S.J., Izatt, J.A., O’Connell, R.V., Winter, K.P., Toth, C.A., Farsiu, S.: Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images. Invest. Opthalmol. Vis. Sci. 53(1), 53 (2012)

    Article  Google Scholar 

  4. Farsiu, S., Chiu, S.J., Izatt, J.A., Toth, C.A.: Fast detection and segmentation of drusen in retinal optical coherence tomography images. In: Proceedings of SPIE, Ophthalmic Technologies XVIII, vol. 6844, p. 68440D (2008)

    Google Scholar 

  5. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  6. Iwama, D., Hangai, M., Ooto, S., Sakamoto, A., Nakanishi, H., Fujimura, T., Domalpally, A., Danis, R.P., Yoshimura, N.: Automated assessment of drusen using three-dimensional spectral-domain optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 53(3), 1576–1583 (2012)

    Article  Google Scholar 

  7. Jager, R.D., Mieler, W.F., Miller, J.W.: Age-related macular degeneration. New Engl. J. Med. 358(24), 2606–2617 (2008)

    Article  Google Scholar 

  8. Jain, N., Farsiu, S., Khanifar, A.A., Bearelly, S., Smith, R.T., Izatt, J.A., Toth, C.A.: Quantitative comparison of drusen segmented on SD-OCT versus drusen delineated on color fundus photographs. Invest. Ophthalmol. Vis. Sci. 51(10), 4875–4883 (2010)

    Article  Google Scholar 

  9. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)

  10. Lee, C.S., Baughman, D.M., Lee, A.Y.: Deep learning is effective for classifying normal versus age-related macular degeneration optical coherence tomography images. Ophthalmol. Retina 1(4), 322–327 (2017)

    Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Schmidt-Erfurth, U., Bogunovic, H., Klimscha, S., Hu, X., Schlegl, T., Sadeghipour, A., Gerendas, B.S., Osborne, A., Waldstein, S.M.: Machine learning to predict the individual progression of AMD from imaging biomarkers. In: Proceedings of Association for Research in Vision and Ophthalmology, p. 3398 (2017)

    Google Scholar 

  13. de Sisternes, L., Simon, N., Tibshirani, R., Leng, T., Rubin, D.L.: Quantitative SD-OCT imaging biomarkers as indicators of age-related macular degeneration progressionpredicting AMD progression using SD-OCT features. Invest. Ophthalmol. Vis. Sci. 55(11), 7093–7103 (2014)

    Article  Google Scholar 

  14. Sonka, M., Abràmoff, M.D.: Quantitative analysis of retinal OCT. Med. Image Anal. 33, 165–169 (2016)

    Article  Google Scholar 

  15. Zheng, Y., Williams, B.M., Pratt, H., Al-Bander, B., Wu, X., Zhao, Y.: Computer aided diagnosis of age-related macular degeneration in 3D OCT images by deep learning. In: Proceedings of Association for Research in Vision and Ophthalmology, p. 824 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shekoufeh Gorgi Zadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gorgi Zadeh, S. et al. (2017). CNNs Enable Accurate and Fast Segmentation of Drusen in Optical Coherence Tomography. In: Cardoso, M., et al. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support . DLMIA ML-CDS 2017 2017. Lecture Notes in Computer Science(), vol 10553. Springer, Cham. https://doi.org/10.1007/978-3-319-67558-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67558-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67557-2

  • Online ISBN: 978-3-319-67558-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics