Neuroimaging in Clinical Geriatric Psychiatry

  • Amer M. Burhan
  • Udunna C. Anazodo
  • Jean-Paul Soucy


Brain imaging has evolved to facilitate our understanding of structural and functional correlates of emotional, behavioral, and cognitive disorder we face in the clinical practice of geriatric psychiatry. The application of brain imaging techniques as diagnostic or therapeutic monitoring tools is still evolving. Today, brain imaging is both a clinical and research tool. Some imaging modalities have current clinical indications, mainly in ruling out treatable or modifiable illnesses that present with behavioral and/or cognitive symptoms in old age, and some require further validation to improve their predictive value. Clinicians need to use brain imaging tools wisely and in the broader context of various clinical data sources (e.g., history, examination, laboratory studies) to more focally define, explain, and, ultimately, manage clinical syndromes. In this chapter, we will provide an overview of currently available neuroimaging modalities, orient clinicians to structural and functional neuroanatomy, provide case examples on how neuroimaging can support the clinical diagnostic process, and offer suggestion on how to use neuroimaging optimally in geriatric psychiatry clinics.


Neuroimaging CT MRI PET SPECT Neuroanatomy Aging Neurocognitive 


  1. 1.
    Freemon FR. Galen’s ideas on neurological function. J Hist Neurosci. 1994;3(4):263–71.CrossRefPubMedGoogle Scholar
  2. 2.
    Simpson D. Phrenology and the neurosciences: contributions of F. J. Gall and J. G. Spurzheim. ANZ J Surg. 2005;75(6):475–82.CrossRefPubMedGoogle Scholar
  3. 3.
    McKinney W. History of neuroimaging American Society of Neuroimaging website. American Society of Neuroimaging; 1997. Available from:
  4. 4.
    Burhan AM, Marlatt NM, Palaniyappan L, Anazodo UC, Prato FS. Role of hybrid brain imaging in neuropsychiatric disorders. Diagnostics (Basel). 2015;5(4):577–614.CrossRefGoogle Scholar
  5. 5.
    Brodmann K. Brodmann’s: localisation in the cerebral cortex. New York: Springer Science & Business Media; 2007.Google Scholar
  6. 6.
    Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, et al. A multi-modal parcellation of human cerebral cortex. Nature. 2016;536(7615):171–8.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Williamson PC, Allman JM. A framework for interpreting functional networks in schizophrenia. Front Hum Neurosci. 2012;6:184.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15(10):483–506.CrossRefPubMedGoogle Scholar
  9. 9.
    Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(2):676–82.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gusnard DA, Akbudak E, Shulman GL, Raichle ME. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(7):4259–64.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fox KC, Spreng RN, Ellamil M, Andrews-Hanna JR, Christoff K. The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. NeuroImage. 2015;111:611–21.CrossRefPubMedGoogle Scholar
  12. 12.
    Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, et al. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci U S A. 2007;104(26):11073–8.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, et al. A core system for the implementation of task sets. Neuron. 2006;50(5):799–812.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214(5–6):655–67.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27(9):2349–56.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Downar J, Blumberger DM, Daskalakis ZJ. The neural crossroads of psychiatric illness: an emerging target for brain stimulation. Trends Cogn Sci. 2016;20(2):107–20.CrossRefPubMedGoogle Scholar
  17. 17.
    Fjell AM, Walhovd KB. Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci. 2010;21(3):187–221.CrossRefPubMedGoogle Scholar
  18. 18.
    Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL. Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. AJNR Am J Neuroradiol. 2002;23(8):1327–33.PubMedGoogle Scholar
  19. 19.
    Coffey CE, Lucke JF, Saxton JA, Ratcliff G, Unitas LJ, Billig B, et al. Sex differences in brain aging: a quantitative magnetic resonance imaging study. Arch Neurol. 1998;55(2):169–79.CrossRefPubMedGoogle Scholar
  20. 20.
    Burgmans S, van Boxtel MP, Smeets F, Vuurman EF, Gronenschild EH, Verhey FR, et al. Prefrontal cortex atrophy predicts dementia over a six-year period. Neurobiol Aging. 2009;30(9):1413–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Burgmans S, van Boxtel MP, Vuurman EF, Smeets F, Gronenschild EH, Uylings HB, et al. The prevalence of cortical gray matter atrophy may be overestimated in the healthy aging brain. Neuropsychology. 2009;23(5):541–50.CrossRefPubMedGoogle Scholar
  22. 22.
    Meyer JS, Kawamura J, Terayama Y. White matter lesions in the elderly. J Neurol Sci. 1992;110(1–2):1–7.CrossRefPubMedGoogle Scholar
  23. 23.
    de Leeuw FE, de Groot JC, Achten E, Oudkerk M, Ramos LM, Heijboer R, et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry. 2001;70(1):9–14.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    de Leeuw FE, de Groot JC, Bots ML, Witteman JC, Oudkerk M, Hofman A, van Gijn J, Breteler MM. Carotid atherosclerosis and cerebral white matter lesions in a population based magnetic resonance imaging study. J Neurol. 2000;247(4):5.CrossRefGoogle Scholar
  25. 25.
    Longstreth WT Jr, Manolio TA, Arnold A, Burke GL, Bryan N, Jungreis CA, et al. Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study. Stroke. 1996;27(8):1274–82.CrossRefPubMedGoogle Scholar
  26. 26.
    Braffman BH, Zimmerman RA, Trojanowski JQ, Gonatas NK, Hickey WF, Schlaepfer WW. Brain MR: pathologic correlation with gross and histopathology. 2. Hyperintense white-matter foci in the elderly. AJR Am J Roentgenol. 1988;151(3):559–66.CrossRefPubMedGoogle Scholar
  27. 27.
    Spilt A, Goekoop R, Westendorp RG, Blauw GJ, de Craen AJ, van Buchem MA. Not all age-related white matter hyperintensities are the same: a magnetization transfer imaging study. AJNR Am J Neuroradiol. 2006;27(9):1964–8.PubMedGoogle Scholar
  28. 28.
    Fazekas FKR, Offenbacher H, Schmidt R, Kleinert G, Payer F, Radner H, Lechner H. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 1993;43(9):6.CrossRefGoogle Scholar
  29. 29.
    Park DC, Reuter-Lorenz P. The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol. 2009;60:173–96.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Walhovd KB, Fjell AM, Espeseth T. Cognitive decline and brain pathology in aging--need for a dimensional, lifespan and systems vulnerability view. Scand J Psychol. 2014;55(3):244–54.CrossRefPubMedGoogle Scholar
  31. 31.
    Nyberg L, Lovden M, Riklund K, Lindenberger U, Backman L. Memory aging and brain maintenance. Trends Cogn Sci. 2012;16(5):292–305.CrossRefPubMedGoogle Scholar
  32. 32.
    Sala-Llonch R, Bartres-Faz D, Junque C. Reorganization of brain networks in aging: a review of functional connectivity studies. Front Psych. 2015;6:663.Google Scholar
  33. 33.
    Bushong SC. Radiologic science for technologists. 9th ed. St. Louis: Mosby; 2009. p. 704.Google Scholar
  34. 34.
    Huda W, Mettler FA. Volume CT dose index and dose-length product displayed during CT: what good are they? Radiology. 2011;258(1):236–42.CrossRefPubMedGoogle Scholar
  35. 35.
    Ai T, Morelli JN, Hu X, Hao D, Goerner FL, Ager B, et al. A historical overview of magnetic resonance imaging, focusing on technological innovations. Investig Radiol. 2012;47(12):725–41.CrossRefGoogle Scholar
  36. 36.
    Liu Y, Wang K, Yu C, He Y, Zhou Y, Liang M, et al. Regional homogeneity, functional connectivity and imaging markers of Alzheimer’s disease: a review of resting-state fMRI studies. Neuropsychologia. 2008;46(6):1648–56.CrossRefPubMedGoogle Scholar
  37. 37.
    Caciagli L, Bernhardt BC, Hong SJ, Bernasconi A, Bernasconi N. Functional network alterations and their structural substrate in drug-resistant epilepsy. Front Neurosci. 2014;8:411.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Fan AP, Jahanian H, Holdsworth SJ, Zaharchuk G. Comparison of cerebral blood flow measurement with [15O]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: a systematic review. J Cereb Blood Flow Metab. 2016;36(5):842–61.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Anazodo UC, Thiessen JD, Ssali T, Mandel J, Gunther M, Butler J, et al. Feasibility of simultaneous whole-brain imaging on an integrated PET-MRI system using an enhanced 2-point Dixon attenuation correction method. Front Neurosci. 2014;8:434.PubMedGoogle Scholar
  40. 40.
    Cha YH, Jog MA, Kim YC, Chakrapani S, Kraman SM, Wang DJ. Regional correlation between resting state FDG PET and pCASL perfusion MRI. J Cereb Blood Flow Metab. 2013;33(12):1909–14.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Newberg AB, Wang J, Rao H, Swanson RL, Wintering N, Karp JS, et al. Concurrent CBF and CMRGlc changes during human brain activation by combined fMRI-PET scanning. NeuroImage. 2005;28(2):500–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Chen Y, Wolk DA, Reddin JS, Korczykowski M, Martinez PM, Musiek ES, et al. Voxel-level comparison of arterial spin-labeled perfusion MRI and FDG-PET in Alzheimer disease. Neurology. 2011;77(22):1977–85.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Musiek ES, Chen Y, Korczykowski M, Saboury B, Martinez PM, Reddin JS, et al. Direct comparison of fluorodeoxyglucose positron emission tomography and arterial spin labeling magnetic resonance imaging in Alzheimer's disease. Alzheimers Dement. 2012;8(1):51–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Anazodo UC, Shoemaker JK, Suskin N, St Lawrence KS. An investigation of changes in regional gray matter volume in cardiovascular disease patients, pre and post cardiovascular rehabilitation. Neuroimage Clin. 2013;3:388–95.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Chen JJ, Rosas HD, Salat DH. The relationship between cortical blood flow and sub-cortical white-matter health across the adult age span. PLoS One. 2013;8(2):e56733.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, et al. One-year brain atrophy evident in healthy aging. J Neurosci. 2009;29(48):15223–31.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB, Alzheimer’s Disease Neuroimaging I. What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Prog Neurobiol. 2014;117:20–40.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Fjell AM, Westlye LT, Grydeland H, Amlien I, Espeseth T, Reinvang I, et al. Accelerating cortical thinning: unique to dementia or universal in aging? Cereb Cortex. 2014;24(4):919–34.CrossRefPubMedGoogle Scholar
  49. 49.
    Iturria-Medina Y, Sotero RC, Toussaint PJ, Mateos-Perez JM, Evans AC, Alzheimer’s Disease Neuroimaging I. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat Commun. 2016;7:11934.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kety SS, Harmel MH, et al. Nitrous oxide method for measurement of human cerebral blood flow; experimental evaluation of fundamental assumptions. Fed Proc. 1947;6(1 Pt 2):142.PubMedGoogle Scholar
  51. 51.
    Portnow LH, Vaillancourt DE, Okun MS. The history of cerebral PET scanning: from physiology to cutting-edge technology. Neurology. 2013;80(10):952–6.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Li J, Jaszczak RJ, Turkington TG, Metz CE, Gilland DR, Greer KL, et al. An evaluation of lesion detectability with cone-beam, fanbeam and parallel-beam collimation in SPECT by continuous ROC study. J Nucl Med. 1994;35(1):135–40.PubMedGoogle Scholar
  53. 53.
    Minoshima S, Drzezga AE, Barthel H, Bohnen N, Djekidel M, Lewis DH, et al. SNMMI procedure standard/EANM practice guideline for amyloid PET imaging of the brain 1.0. J Nucl Med. 2016;57(8):1316–22.CrossRefPubMedGoogle Scholar
  54. 54.
    Djang DS, Janssen MJ, Bohnen N, Booij J, Henderson TA, Herholz K, et al. SNM practice guideline for dopamine transporter imaging with 123I-ioflupane SPECT 1.0. J Nucl Med. 2012;53(1):154–63.CrossRefPubMedGoogle Scholar
  55. 55.
    Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28(5):897–916.CrossRefPubMedGoogle Scholar
  56. 56.
    Waxman AD, Herholz K, Lewis DH, Herscovitch P, Minoshima S, Mountz JM, Consensus, GID. Society of Nuclear Medicine procedure guideline for FDG PET brain imaging. Philadelphia: Society of Nuclear Medicine and Molecular Imaging; 2009.Google Scholar
  57. 57.
    Brown RK, Bohnen NI, Wong KK, Minoshima S, Frey KA. Brain PET in suspected dementia: patterns of altered FDG metabolism. Radiographics. 2014;34(3):684–701.CrossRefPubMedGoogle Scholar
  58. 58.
    Rappoport V, Carney JPJ, Townsend DW, editors. CT tube-voltage dependent attenuation correction scheme for PET/CT scanners. Nuclear Science Symposium; 2004 16–22 Oct. 2004: IEEE.Google Scholar
  59. 59.
    Koesters T, Friedman KP, Fenchel M, Zhan Y, Hermosillo G, Babb J, et al. Dixon sequence with superimposed model-based bone compartment provides highly accurate PET/MR attenuation correction of the brain. J Nucl Med. 2016;57(6):918–24.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Burgos N, Cardoso MJ, Modat M, Pedemonte S, Dickson J, Barnes A, et al. Attenuation correction synthesis for hybrid PET-MR scanners. Med Image Comput Comput Assist Interv. 2013;16(Pt 1):147–54.PubMedGoogle Scholar
  61. 61.
    Ladefoged CN, Benoit D, Law I, Holm S, Kjaer A, Hojgaard L, et al. Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE): application to PET/MR brain imaging. Phys Med Biol. 2015;60(20):8047–65.CrossRefPubMedGoogle Scholar
  62. 62.
    McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Burhan AM, Bartha R, Bocti C, Borrie M, Laforce R, Rosa-Neto P, et al. Role of emerging neuroimaging modalities in patients with cognitive impairment: a review from the Canadian consensus conference on the diagnosis and treatment of dementia 2012. Alzheimers Res Ther. 2013;5(Suppl 1):S4.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Soucy JP, Bartha R, Bocti C, Borrie M, Burhan AM, Laforce R, et al. Clinical applications of neuroimaging in patients with Alzheimer’s disease: a review from the fourth Canadian consensus conference on the diagnosis and treatment of dementia 2012. Alzheimers Res Ther. 2013;5(Suppl 1):S3.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Filippi M, Agosta F, Barkhof F, Dubois B, Fox NC, Frisoni GB, et al. EFNS task force: the use of neuroimaging in the diagnosis of dementia. Eur J Neurol. 2012;19(12):e131–40. 1487–501.CrossRefPubMedGoogle Scholar
  66. 66.
    Goodglass H, Kaplan E. The assessment of aphasia and related disorders. Philadelphia: Lea & Febiger; 1972. vii, 80, p. 28Google Scholar
  67. 67.
    Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.CrossRefPubMedGoogle Scholar
  68. 68.
    Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Kluger A, Ferris SH, Golomb J, Mittelman MS, Reisberg B. Neuropsychological prediction of decline to dementia in nondemented elderly. J Geriatr Psychiatry Neurol. 1999;12(4):168–79.CrossRefPubMedGoogle Scholar
  70. 70.
    Tombaugh TN. Trail Making Test A and B: normative data stratified by age and education. Arch Clin Neuropsychol. 2004;19(2):203–14.CrossRefPubMedGoogle Scholar
  71. 71.
    Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adey M, et al. Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res. 1982;17(1):37–49.CrossRefPubMedGoogle Scholar
  72. 72.
    Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456–77.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Sachdev P, Kalaria R, O'Brien J, Skoog I, Alladi S, Black SE, et al. Diagnostic criteria for vascular cognitive disorders: a VASCOG statement. Alzheimer Dis Assoc Disord. 2014;28(3):206–18.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Shprecher D, Schwalb J, Kurlan R. Normal pressure hydrocephalus: diagnosis and treatment. Curr Neurol Neurosci Rep. 2008;8(5):371–6.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Bucks RS, Olaithe M, Eastwood P. Neurocognitive function in obstructive sleep apnoea: a meta-review. Respirology. 2013;18(1):61–70.CrossRefPubMedGoogle Scholar
  76. 76.
    Hejl A, Hogh P, Waldemar G. Potentially reversible conditions in 1000 consecutive memory clinic patients. J Neurol Neurosurg Psychiatry. 2002;73(4):390–4.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Kennedy PG. Viral encephalitis: causes, differential diagnosis, and management. J Neurol Neurosurg Psychiatry. 2004;75(Suppl 1):i10–5.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Gauthier S, Patterson C, Chertkow H, Gordon M, Herrmann N, Rockwood K, et al. Recommendations of the 4th Canadian consensus conference on the diagnosis and treatment of dementia (CCCDTD4). Can Geriatr J. 2012;15(4):120–6.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Henderson EJ, Lord SR, Brodie MA, Gaunt DM, Lawrence AD, Close JC, et al. Rivastigmine for gait stability in patients with Parkinson’s disease (ReSPonD): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15(3):249–58.CrossRefPubMedGoogle Scholar
  80. 80.
    Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W, et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA. 2001;286(17):2120–7.CrossRefPubMedGoogle Scholar
  81. 81.
    Battal B, Kocaoglu M, Bulakbasi N, Husmen G, Tuba Sanal H, Tayfun C. Cerebrospinal fluid flow imaging by using phase-contrast MR technique. Br J Radiol. 2011;84(1004):758–65.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Yamada S, Tsuchiya K, Bradley WG, Law M, Winkler ML, Borzage MT, et al. Current and emerging MR imaging techniques for the diagnosis and management of CSF flow disorders: a review of phase-contrast and time-spatial labeling inversion pulse. AJNR Am J Neuroradiol. 2015;36(4):623–30.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Amer M. Burhan
    • 1
  • Udunna C. Anazodo
    • 2
  • Jean-Paul Soucy
    • 3
  1. 1.Parkwood Institute-Mental Health/Western UniversityLondonCanada
  2. 2.Lawson Health Research InstituteLondonCanada
  3. 3.Montreal Neurological Institute, McGill UniversityMontrealCanada

Personalised recommendations