Skip to main content

A 3D Ultrasound Informed Model of the Human Gastrocnemius Muscle

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10549))

Abstract

Muscle fascicle structure characterises muscle function, which in turn plays a key role in computer simulation of muscle shape. In this study we use 3D ultrasound from human gastrocnemius muscle to identify and map the muscle fascicle orientation and deformation during passive motion in four subjects. This muscle fascicle description is integrated into a representative muscle volume element using a free-form deformation technique to create a muscle primitive that deforms according to the embedded muscle fascicles within. For each subject computed passive tensile force was used to optimise the constitutive behaviour so that the known deformation matched this load. Each subject was fit to match deformation at 25%, 50%, 75% and 100% of muscle stretch. The medial gastrocnemius muscle built from these muscle primitives exhibited a contractile shape that is consistent to that observed in human gastrocnemius contraction. This shape was evaluated against the same muscle embedded with muscle fascicles derived from diffusion-weighted magnetic resonance imaging and was in good qualitative agreement. Muscle primitives may be used as building blocks to build large muscle volumes for mechanics simulation, visualisation and medical education.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nielsen, P., et al.: Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. Heart Circ. Physiol. 260(4), H1365–H1378 (1991)

    Google Scholar 

  2. Hunter, P.J.: Myocardial constitutive laws for continuum mechanics models of the heart. In: Sideman, S., Beyar, R. (eds.) Molecular and Subcellular Cardiology. Advances in Experimental Medicine and Biology, vol. 382, pp. 303–318. Springer, Boston (1995)

    Chapter  Google Scholar 

  3. Röhrle, O., et al.: A physiologically based, multi-scale model of skeletal muscle structure and function. Frontiers Physiol. 3, 358 (2012)

    Article  Google Scholar 

  4. Blemker, S.S., et al.: A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J. Biomech. 38(4), 657–665 (2005)

    Article  Google Scholar 

  5. Lu, Y., et al.: Modelling skeletal muscle fibre orientation arrangement. Comput. Methods Biomechan. Biomed. Eng. 14(12), 1079–1088 (2011)

    Article  Google Scholar 

  6. Lemos, R., et al.: A framework for structured modeling of skeletal muscle. Comput. Methods Biomech. Biomed. Eng. 7(6), 305–317 (2004)

    Article  Google Scholar 

  7. Sánchez, C.A., et al.: Embedding digitized fibre fields in finite element models of muscles. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2(4), 223–236 (2014)

    Google Scholar 

  8. Young, A., et al.: Size and strength of the quadriceps muscles of old and young women*. Eur. J. Clin. Invest. 14(4), 282–287 (1984)

    Article  Google Scholar 

  9. Rutherford, O., et al.: Measurement of fibre pennation using ultrasound in the human quadriceps in vivo. Eur. J. Appl. Physiol. 65(5), 433–437 (1992)

    Article  Google Scholar 

  10. Henriksson-Larsen, K., et al.: Do muscle fibre size and fibre angulation correlate in pennated human muscles? Eur. J. Appl. Physiol. 64(1), 68–72 (1992)

    Article  Google Scholar 

  11. Herbert, R., et al.: Changes in pennation with joint angle and muscle torque: in vivo measurements in human brachialis muscle. J. Physiol. 484(Pt 2), 523–532 (1995)

    Article  Google Scholar 

  12. Maganaris, C.N., et al.: Predictability of in vivo changes in pennation angle of human tibialis anterior muscle from rest to maximum isometric dorsiflexion. Eur. J. Appl. Physiol. 79(3), 294–297 (1999)

    Article  Google Scholar 

  13. Narici, M., et al.: In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction. J. Physiol. 496(Pt. 1), 287–297 (1996)

    Article  Google Scholar 

  14. Herbert, R., et al.: Changes in the length and three-dimensional orientation of muscle fascicles and aponeuroses with passive length changes in human gastrocnemius muscles. J. Physiol. 593(2), 441–455 (2015)

    Article  Google Scholar 

  15. Hoang, P.D., et al.: A new method for measuring passive length-tension properties of human gastrocnemius muscle in vivo. J. Biomech. 38(6), 1333–1341 (2005)

    Article  Google Scholar 

  16. Kwah, L.K., et al.: Passive mechanical properties of gastrocnemius muscles of people with ankle contracture after stroke. Arch. Phys. Med. Rehabil. 93(7), 1185–1190 (2012)

    Article  Google Scholar 

  17. Fernandez, J.W., et al.: Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech. Model. Mechanobiol. 2(3), 139–155 (2004)

    Article  Google Scholar 

  18. Hunter, P., et al.: Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Mol. Biol. 69(2), 289–331 (1998)

    Article  MathSciNet  Google Scholar 

  19. Fernandez, J., et al.: Modelling the passive and nerve activated response of the rectus femoris muscle to a flexion loading: a finite element framework. Med. Eng. Phys. 27(10), 862–870 (2005)

    Article  Google Scholar 

  20. Zhang, J., et al.: The MAP client: user-friendly musculoskeletal modelling workflows. In: Bello, F., Cotin, S. (eds.) ISBMS 2014. LNCS, vol. 8789, pp. 182–192. Springer, Cham (2014). doi:10.1007/978-3-319-12057-7_21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fernandez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Alipour, M., Mithraratne, K., Herbert, R.D., Fernandez, J. (2017). A 3D Ultrasound Informed Model of the Human Gastrocnemius Muscle. In: Cardoso, M., et al. Imaging for Patient-Customized Simulations and Systems for Point-of-Care Ultrasound. BIVPCS POCUS 2017 2017. Lecture Notes in Computer Science(), vol 10549. Springer, Cham. https://doi.org/10.1007/978-3-319-67552-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67552-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67551-0

  • Online ISBN: 978-3-319-67552-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics