Advertisement

Image Deblurring Based on Physical Processes of Blur Impacts

  • Andrei Bogoslovsky
  • Irina Zhigulina
  • Eugene Bogoslovsky
  • Vitaly Vasilyev
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 135)

Abstract

Main methods of image deblurring, as well as their advantages and disadvantages, are considered in this chapter. It is revealed that these methods do not take into account the physical processes that occur during a blur impact. It is shown that instead of the continuous function of illuminating intensity it is convenient to consider its discrete-analog modification, in which the size of a discrete will be equal to the size of a photosensitive element. In the case of the stationary images, such replacement will not impact on the formed video signal in any way. On the contrary, when objects move relative to the fixed sensor, the processes of blur may appear. Due to these reasons, the models of various blur types, such as the linear, non-linear, and vibrational models, were built. Note that these models are subdivided on the models with the small and large blur according to the ratio of movement displacement of an object and its length. The constructed models are the systems of the simple non-uniform algebraic equations with non-singular matrixes that allows to build the deblurring algorithms. The proposed algorithms were tested using natural images obtained from the imaging device layout.

Keywords

Image deblurring Blind deconvolution Small blur Large blur Vibrational blur System of equations Image restoration Matrix methods 

References

  1. 1.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall, Upper Saddle River (2002)Google Scholar
  2. 2.
    Jahne, B.: Digital Image Processing: with CD-ROM. Springer, Berlin; Heidelberg; New York, Barcelona, Hong Kong, London, Milan, Paris, Tokyo (2002)CrossRefMATHGoogle Scholar
  3. 3.
    William, K., Pratt, W.K.: Digital Image Processing: PIKS Inside, 3rd edn. Wiley, New York (2001)MATHGoogle Scholar
  4. 4.
    Gruzman, I.S., Kirichuk, V.S., Kosykh, V.P., Peretyagin, G.I., Spector, A.A.: Digital image processing in information systems: Tutorial. NSTU (2000) (in Russian)Google Scholar
  5. 5.
    Vasilenko, G.I., Taratorin, A.M.: Image Restoration. Radio and Communication, Moscow (in Russian) (1986)Google Scholar
  6. 6.
    Sizikov, V.S.: Sustainable methods of processing measurement results: Tutorial. “SpetsLit”, Saint Petersburg (1999) (in Russian)Google Scholar
  7. 7.
    Pereslavtseva, E.E., Philippov, M.V.: Rapid method for restoration of images blurred when moving. Electronic scientific and technical edition “Science and Education”, № 77-30569/340562 (2012) (in Russian)Google Scholar
  8. 8.
    Kokoshkin, A.V., Korotkov, V.A., Korotkov, K.V., Novichikhin, E.P.: Blind Restoration of Images Distorted by Blur and Defocusing, with Unknown Shape and Parameters of AF. Radio Electronics Magazine, Moscow (in Russian) (2014)Google Scholar
  9. 9.
    Yadav, S., Jain, C., Chugh, A.: Evaluation of image deblurring techniques. Int. J. Comput. Appl. 139(12), 32–36 (2016)Google Scholar
  10. 10.
    Al-Ameen, Z., Sulong, G., Johar, M.G.M.: A comprehensive study on fast image deblurring techniques. Int. J. Adv. Sci. Technol. 44, 1–10 (2012)Google Scholar
  11. 11.
    Wang, J., Lu, K., Wang, Q., Jia, J.: Kernel Optimization for Blind Motion Deblurring with Image Edge Prior. Mathematical Problems in Engineering, vol. 2012, Article ID 639824. Hindawi Publishing Corporation (2012)Google Scholar
  12. 12.
    Vio, R., Nagy, J., Tenorio, L., Wamsteker, W.: A simple but efficient algorithm for multiple-image deblurring. Astron. Astrophys. 416, 403–410 (2004)Google Scholar
  13. 13.
    Singh, M.K., Tiwary, U.S., Hoon-Kim, Y.: An adaptively accelerated Lucy-Richardson method for image deblurring. EURASIP J. Adv. Signal Process. 2008, Article ID 52 (2008)Google Scholar
  14. 14.
    Sorel, M., Flusser, J.: Space-variant restoration of images degraded by camera motion blur. IEEE Trans. Image Process. 17(2), 105–116 (2008)Google Scholar
  15. 15.
    Malgouyres, F.: A framework for image deblurring using wavelet packet bases. Appl. Comput. Harmon. Anal. 12(3), 309–331 (2002)Google Scholar
  16. 16.
    Daubechies, I., Teschke, G.: Variational image restoration by means of wavelets: simultaneous decomposition, deblurring, and denoising. Appl. Comput. Harmon. Anal. 19(1), 1–16 (2005)Google Scholar
  17. 17.
    Yuzhikov, V.: Restoration of defocused and blurred images. http://habrahabr.ru/post/136853. Accessed 25 June 2017 (in Russian)
  18. 18.
    Yitzhaky, Y., Mor, I., Lantzman, A., Kopeika, N.S.: Direct method for restoration of motion-blurred images. J. Opt. Soc. Am. 15(6), 1512–1519 (1998)Google Scholar
  19. 19.
    Yap, K.H., Guan, L., Perry, S.W., Wong, H.S.: Adaptive Image Processing: A Computational Intelligence Perspective, 2nd edn. CRC Press, Taylor & Francis Group (2010)MATHGoogle Scholar
  20. 20.
    Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR’2009), pp. 1964–1971 (2009)Google Scholar
  21. 21.
    Babacan, S.D., Molina, R., Katsaggelos, A.K.: Parameter estimation in total variation blind deconvolution. In: 16th European Signal Processing Conference (EUSIPCO’2008), pp. 25–29 (2008)Google Scholar
  22. 22.
    Kundur, D., Hatzinakos, D.: Blind image deconvolution. IEEE Signal Process. Mag. 13(3), 43–64 (1996)Google Scholar
  23. 23.
    Wu, J.M., Chen, H.C., Wu, C.C., Hsu, P.H.: Blind image deconvolution by neural recursive function approximation. World Acad. Sci. Eng. Technol. 4(10), 1383–1390 (2010)Google Scholar
  24. 24.
    Martinello, M., Favaro, P.: Single image blind deconvolution with higher-order texture statistics. In: Cremers, D., Magnor, M., Oswald, M.R., Zelnik-Manor, L. (eds.) Video Processing and Computional Video. LNCS, vol. 7082, pp. 124–151. Springer, Berlin, Heidelberg (2011)Google Scholar
  25. 25.
    Ayers, G.R., Dainty, J.C.: Iterative blind deconvolution method and its applications. Opt. Lett. 13(7), 547–548 (1988)Google Scholar
  26. 26.
    Holmes, T.J., Biggs, D., Abu-Tarif, A.: Blind deconvolution. In: Pawler, J.B. (ed.) Handbook of Biological Confocal Microscopy, 3rd edn, pp. 468–487. Springer Science + Business Media, LLC, New York (2006)CrossRefGoogle Scholar
  27. 27.
    Bhuiyan, M.I., Sacchi, M.D.: Two-stage blind deconvolution. In: GeoConvention 2013: Integration, pp. 1–6 (2013)Google Scholar
  28. 28.
    Kwon, T.M.: Blind Deconvolution of Vehicle Inductance Signatures for Travel-Time Estimation. Minnesota Department of Transportation, MN/RC-2006-06 (2006)Google Scholar
  29. 29.
    Hirsch, M., Harmeling, S., Sra, S., Schölkopf, S.: Online multi-frame blind deconvolution with super-resolution and saturation correction. Astron. Astrophys. 531, A9.1–A9.11 (2011)Google Scholar
  30. 30.
    Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind deconvolution. Neural Comput. 7(6), 1129–1159 (1995)Google Scholar
  31. 31.
    Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graphics 27(3), Article 73.1–73.10 (2008)Google Scholar
  32. 32.
    Bando, Y., Chen, B.Y., Nishita, T.: Motion deblurring from a single image using circular sensor motion. Comput. Graph. Forum 30(7), 1869–1878 (2011)Google Scholar
  33. 33.
    Sizikov, V.S., Rossiyskaya, M.V., Kozachenko, A.V.: Blurred Images Processing by the Methods of Differentiation, Hartley Transform and Tikhonov Regularization. Priborostroenie, Moscow (in Russian) (1999)Google Scholar
  34. 34.
    Sizikov, V.S.: The truncation—blurring—rotation technique for reconstructing distorted images. J. Opt. Technol. 78(5), 298–304 (2011)Google Scholar
  35. 35.
    Breiswell, R.: Hartley Transformation. Mir, Moscow (in Russian) (1990)Google Scholar
  36. 36.
    Tikhonov, A.N., Arsenin, V.Y., Timonov, A.A.: Mathematical Problems of Computer Tomography. Science, Moscow (1987) (in Russian)Google Scholar
  37. 37.
    Sizikov, V.S.: Analysis of local regularization method and formulation of the suboptimal filtration method for solution of equation I kind. Journal of Computer Mathematics and Mathematical Physics, Moscow (in Russian) (1999)MATHGoogle Scholar
  38. 38.
    Bogoslovskiy, A.V., Zhigulina, I.V., Bogoslovskiy, E.A., Ponomarev, A.V., Vasilyev, V.V.: Linear Blur. Radiotec, Moscow (in Russian) (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Andrei Bogoslovsky
    • 1
  • Irina Zhigulina
    • 1
  • Eugene Bogoslovsky
    • 1
  • Vitaly Vasilyev
    • 1
  1. 1.Air Force Military Training and Scientific Center “Air Force Academy”VoronezhRussian Federation

Personalised recommendations