Skip to main content

Extraction and Selection of Objects in Digital Images by the Use of Straight Edges Segments

  • Chapter
  • First Online:

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 135))

Abstract

New method for finding geometric structures in digital gray-level images is proposed. The method is based on grouping straight line segments, which correspond to the edges of the object. It includes extraction of straight line segments by oriented filtering of gradient image and gives the ordered list of segments with the endpoints’ coordinates for each segment. Adaptive algorithm for straight edge segments extraction is developed that uses angle adjustment of oriented filter in order to extract the line corresponding to the real edges accurately. This algorithm permits the extraction and localization of artificial objects with the rectangular or polygonal shape in digital images. Perceptual grouping approach is applied to extracted segments in order to obtain the simple and complex structures of lines using their crossings. Proposed approach uses the points of intersection of ordered segments as the main property of object structure and also takes into account some specific properties of grouped lines, such as the anti-parallelism, proximity, and adjacency. At the first step, the simple structures are obtained by lines grouping taking into consideration all crossing lines or only part of them. At the second step, these simple structures are joined allowing for restrictions. Initial image is transformed to a collection of closed rectangular or polygonal structures with their locations and orientations. Structures obtained by this method represent an intermediate-level description of interesting objects, which have polygonal view (buildings, parts of roads, bridges, and some natural places of landscape). Application with real aerial and satellite images shows a good ability to separate and extract the specific objects like buildings and other line-segment-rich structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Iqbal, Q., Aggarwal, J.K.: Retrieval by classification of images containing large manmade objects using perceptual grouping. Pattern Recognit. 35(7), 1463–1479 (2002)

    Article  MATH  Google Scholar 

  2. Movahedi, V.: Contour Grouping. Department of Computer Science and Engineering & Centre for Vision Research, Qual Exam, York University (2009)

    Google Scholar 

  3. Sohn, G.: Extraction of buildings from high-resolution satellite data and Lidar. In: XXth ISPRS Congress, vol. XXXV, Part B3, pp. 1036–1042 (2004)

    Google Scholar 

  4. Srinivasan,P., Wang, L., Shi, J.: Grouping contours via a related image. In: 21st International Conference on Neural Information Processing Systems (NIPS’2008), pp. 1553–1560 (2008)

    Google Scholar 

  5. Ferrari, V., Fevrier, L., Jurie, F., Schmid, C.: Groups of adjacent contour segments for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 30(1), 36–51 (2008)

    Article  Google Scholar 

  6. Lu, Ch., Latecki, L.J., Adluru, N., Yang, X., Ling, H.: Shape guided contour grouping with particle filters. In: IEEE 12th International Conference on Computer Vision (ICCV’2009), pp. 2288–2295 (2009)

    Google Scholar 

  7. Hedau, V., Arora, H., Ahuja, N.: Matching images under unstable segmentations. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR’2008), pp. 551–563 (2008)

    Google Scholar 

  8. Shao, J., Mohr, R., Fraser, C.: Multi-image matching using segment features. Int. Arch. Photogramm. Remote Sens. XXXIII(Part B3), 837–844 (2000)

    Google Scholar 

  9. Mikolajczyk, K., Zisserman, A., Schmid, C.: Shape recognition with edge-based features. In: British Machine Vision Conference (BMVC’2003), pp. 779–788 (2003)

    Google Scholar 

  10. Kadir, T., Brady, M.: Saliency, scale and image description. Int. J. Comput. Vis. 45(2), 83–105 (2001)

    Article  MATH  Google Scholar 

  11. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Comput. Graph. Vis. 3(3), 177–280 (2007)

    Article  Google Scholar 

  12. Volkov, V., Germer, R., Oneshko, A., Oralov, D.: Object description and extraction by the use of straight line segments in digital images. In: International Conference on Image Processing, Computer Vision and Pattern Recognition (IPCV’2011), pp. 588–594 (2011)

    Google Scholar 

  13. Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3D objects. Int. J. Comput. Vis. 7(3), 263–284 (2006)

    Google Scholar 

  14. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  15. Sohn, G., Dowman, I.J.: Extraction of buildings from high resolution satellite data. In: Baltsavias, E.P., Gruen, A., VanGool, L. (eds.) Automatic Extraction of Man-Made Objects from Aerial and Space Images (III), pp. 345–355. CRC Press (2001)

    Google Scholar 

  16. Brown, M., Hua, G., Winder, S.: Discriminative learning of local image descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 1–14 (2011)

    Article  Google Scholar 

  17. Horaud, R., Veillon, F., Skordas, T.: Finding geometric and relational structures in an image. In: Faugeras, O. (ed.) Computer Vision—ECCV 90, LNCS, vol. 427, pp. 374–384. Springer (1990)

    Google Scholar 

  18. Kim, S.K., Ranganah, H.S.: Efficient algorithms to extract geometric features of edge image. In: International Conference on Image Process, Computer Vision, and Pattern Recognition (IPCV’2010), vol. 2, pp. 519–525 (2010)

    Google Scholar 

  19. Volkov, V., Germer, R., Oneshko, A., Oralov, D.: Object description and finding of geometric structures on the base of extracted straight edge segments in digital images In: International Conference on Image Process, Computer Vision and Pattern Recognition (IPCV’2012), Part II, pp. 805–812 (2012)

    Google Scholar 

  20. Grompone von Gioi, R., Jakubovich, J., Morel, J.M., Randall, G.: LSD: a line segment detector. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 722–732 (2010)

    Article  Google Scholar 

  21. Medioni, G., Nevatia, R.: Matching images using linear features. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 675–685 (1984)

    Article  Google Scholar 

  22. Fu, Z., Sun, Z.: An algorithm of straight line features matching on aerial imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXVII(Part B3b), 97–102 (2008)

    Google Scholar 

  23. Zhao, Y., Chen, Y.Q.: Connected equi-length line segments for curve and structure matching. J. Pattern Recognit. Artif. Intell. 18(6), 1019–1037 (2004)

    Article  Google Scholar 

  24. Lavigne, D.A., Saeedi, P., Dlugan, A., Goldstein, N., Zwick, H.: Automatic building detection and 3D shape recovery from single monocular electro-optic imagery. In: Kadar, I. (ed.) Signal Processing, Sensor Fusion, and Target Recognition XVI, SPIE Defence & Security Symposium, vol. 6567, Article id. 656716 (2007)

    Google Scholar 

  25. Magli, E., Olmo, G., Presti, L.L.: On-board selection of relevant images: an application to linear feature recognition. IEEE Trans. Image Process. 10(4), 543–553 (2001)

    Article  MATH  Google Scholar 

  26. Tretyak, E., Barinova, O., Kohli, P., Lempitsky, V.: Geometric image parsing in man-made environments. Int. J. Comput. Vis. 97(3), 305–321 (2012)

    Article  Google Scholar 

  27. Theng, L.B.: Automatic building extraction from satellite imagery. Eng. Lett. 13(3), EL_13_3_5 (2006)

    Google Scholar 

  28. Jin, X., Davis, C.H.: Automated building extraction from high-resolution satellite imagery in urban areas using structural, contextual, and spectral information. EURASIP J. Appl. Signal Process. 14, 2196–2206 (2005)

    Article  MATH  Google Scholar 

  29. Ettarid, M., Rouchdi, M., Labouab, L.: Automatic extraction of buildings from high resolution satellite images. In: XXIst ISPRS Congress, vol. XXXVII, Part B8, pp. 61–65 (2008)

    Google Scholar 

  30. Li, Y., Shapiro, L.G.: Consistent line clusters for building recognition in CBIR. In: 16th International Conference on Pattern Recognition (ICPR’2002), vol. 3, pp. 952–956 (2002)

    Google Scholar 

  31. Jia, W., Zhang, J., Yang, J.: SAR image and optical image registration based on contour and similarity measures. In: Geo-spatial Solutions for Emergency Management (GSEM’2009), pp. 1–5 (2009)

    Google Scholar 

  32. Song, Y., Yuan, X., Xu, H.: A multi-temporal image registration method based on edge matching and maximum likelihood estimation sample consensus. Int. Arch. PRSSI Sci. XXXVII(Part B3b), pp. 61–66 (2008)

    Google Scholar 

  33. Bergevin, R., Bernier, J.F.: Detection of unexpected multi-part objects from segmented contour maps. Pattern Recognit. 42(11), 2403–2420 (2009)

    Article  MATH  Google Scholar 

  34. Kim, S.K., Ranganah, H.S.: Efficient algorithms to extract geometric features of edge images. In: Image Process, Computer Vision, and Pattern Recognition (IPCV’2010), Part II, pp. 519–525 (2010)

    Google Scholar 

  35. Brown, M., Hua, G., Winder, S.: Discriminative learning of local image descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 1–14 (2011)

    Article  Google Scholar 

  36. Venkateswar, V., Chellappa, R.: Extraction of straight lines in aerial images. IEEE Trans. Pattern Anal. Mach. Intell. 14(11), 1111–1114 (1992)

    Article  Google Scholar 

  37. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(24), 509–521 (2002)

    Article  Google Scholar 

  38. Cao, F., Muse, P., Sur, F.: Extracting meaningful curves from images. J. Math. Imaging Vis. 22(2–3), 159–181 (2005)

    Article  MathSciNet  Google Scholar 

  39. Bernstein, E.J., Amit, Y.: Part-based statistical models for object classification and detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’2005), vol. 2, pp. 734–740 (2005)

    Google Scholar 

  40. Volkov, V., Germer, R.: Straight edge segments localization on noisy images. In: International Conference on Image Process, Computer Vision and Pattern Recognition (IPCV’2010), vol. II, pp. 512–518 (2010)

    Google Scholar 

  41. Lu, X., Yaoy, J., Li, K., Li, L.: Cannylines: a parameter-free line segment detector. In: IEEE International Conference on Image Processing (ICIP’2015), pp. 507–511 (2015)

    Google Scholar 

  42. Liu, Zh., Wang, J., Liu, W.P.: Building extraction from high resolution imagery based on multi-scale object oriented classification and probabilistic Hough transform. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS’2005), pp. 2250–2253 (2005)

    Google Scholar 

  43. Volkov, V., Germer, R., Oneshko, A., Oralov, D.: Object selection by grouping of straight edge segments in digital images. In: International Conference on Image Process, Computer Vision and Pattern Recognition (IPCV’2013), pp. 321–327 (2013)

    Google Scholar 

Download references

Acknowledgements

Author thanks to Prof. Rudolf Germer from TU Berlin for collaboration, Dr. J. Wernicke from EMT (Penzberg) for picture material and HTW Berlin and DAAD for support of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Volkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Volkov, V.Y. (2018). Extraction and Selection of Objects in Digital Images by the Use of Straight Edges Segments. In: Favorskaya, M., Jain, L. (eds) Computer Vision in Control Systems-3. Intelligent Systems Reference Library, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-319-67516-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67516-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67515-2

  • Online ISBN: 978-3-319-67516-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics