Theoretical and Practical Solutions in Remote Sensing

Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 135)

Abstract

The chapter presents a brief description of chapters that contribute to theoretical and practical solutions for aerial and satellite images processing and the fields close to this scope. One can find the original investigations in the novel tensor and wave models, new scheme of comparative morphology, warping compensation in video stabilization task, image deblurring based on physical processes of blur impacts, fast and robust core structural verification algorithm for feature extraction in images and videos, among others. Each chapter involves practical implementations and explanations.

Keywords

Remote sensing Multidimensional image processing Comparative morphology Digital halftone images Object extraction Traffic monitoring Warping technique Image deblurring Feature extraction Double-sided matrix transformation Counter noise immunity 

References

  1. 1.
    Vasil’ev, K.K., Dement’ev, V.E., Andriyanov, N.A.: Application of mixed models for solving the problem on restoring and estimating image parameters. Pattern Recognit. Image Anal. 26(1), 240–247 (2016)CrossRefGoogle Scholar
  2. 2.
    Krasheninnikov, V.R.: Correlation analysis and synthesis of random field wave models. Pattern Recognit. Image Anal. 25(1), 41–46 (2015)CrossRefGoogle Scholar
  3. 3.
    Krasheninnikov, V.R., Kalinov, D.V., Pankratov, Yu.G.: Spiral autoregressive model of a quasi-periodic signal. Pattern Recognit. Image Anal. 8(1), 211–213 (2001)Google Scholar
  4. 4.
    Krasheninnikov, V.R., Potapov, M.A.: Estimation of parameters of geometric transformation of images by fixed point method. Pattern Recognit. Image Anal. 22(2), 303–317 (2012)CrossRefGoogle Scholar
  5. 5.
    Pyt’ev, Y.P.: Morphological Image Analysis. Pattern Recognit. Image Anal. 3(1), 19–28 (1993)Google Scholar
  6. 6.
    Vizilter, Y.V., Zheltov, S.Y.: Geometrical correlation and matching of 2D image shapes. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. I-3, 191–196 (2012)Google Scholar
  7. 7.
    Vizilter, Y.V., Gorbatsevich, V.S., Rubis, A.Y., Zheltov, S.Y.: (2014) Shape-based image matching using heat kernels and diffusion maps. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL(3), 357–364Google Scholar
  8. 8.
    Vizilter, Y.V., Rubis, A.Y., Zheltov, S.Y., Vygolov, O.V.: Change detection via morphological comparative filters. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. III(3), 279–286 (2016)Google Scholar
  9. 9.
    Petrov, E.P., Medvedeva, E.V.: Nonlinear filtering of statistically connected video sequences based on hidden Markov chains. J. Commun. Technol. Electr. 55(3), 307–315 (2010)CrossRefGoogle Scholar
  10. 10.
    Petrov, E.P., Trubin, I.S., Medvedeva, E.V., Smolskiy, S.M.: Mathematical models of video-sequences of digital half-tone images. In: Atayero, A.A., Sheluhin, O.I. (eds.) Integrated Models for Information Communication System and Networks: Design and Development, pp. 207–241. IGI Global, Hershey (2013)CrossRefGoogle Scholar
  11. 11.
    Petrov, E.P., Trubin, I.S., Medvedeva, E.V., Smolskiy, S.M.: Development of nonlinear filtering algorithms of digital half-tone images. In: Atayero, A.A., Sheluhin, O.I. (eds.) Integrated Models for Information Communication System and Networks: Design and Development, pp. 278–304. IGI Global, Hershey (2013)CrossRefGoogle Scholar
  12. 12.
    Medvedeva, E.V., Kurbatova, E.E.: Image segmentation based on two-dimensional Markov chains. In: Favorskaya, M.N., Jain, L.C. (eds.) Computer Vision in Control Systems-2. Innovations in Practice, vol. 75, pp. 277–295. Springer International Publishing, Switzerland (2015)Google Scholar
  13. 13.
    Volkov, V., Germer, R., Oneshko, A., Oralov, D.: Object description and extraction by the use of straight line segments in digital images. In: International Conference on Image Processing, Computer Vision and Pattern Recognition (IPCV’2011), pp. 588–594 (2011)Google Scholar
  14. 14.
    Volkov, V., Germer, R., Oneshko, A., Oralov, D.: Object selection by grouping of straight edge segments in digital images. In: International Conference on Image Processing, Computer Vision and Pattern Recognition (IPCV’2013), pp. 321–327 (2013)Google Scholar
  15. 15.
    Volkov, V., Germer, R.: Straight edge segments localization on noisy images. In: International Conference on Image Processing, Computer Vision and Pattern Recognition (IPCV’2010), vol. II, pp. 512–518 (2010)Google Scholar
  16. 16.
    Kim, N., Chervonenkis, M.: Situational control unmanned aerial vehicles for traffic monitoring. Mod. Appl. Sci. 9(5), 1852–1913 (2015)Google Scholar
  17. 17.
    Kim, N., Bodunkov, N.: Adaptive surveillance algorithms based on the situation analysis. In: Favorskaya, M., Jain, L.C. (eds.) Computer Vision in Control Systems-2, ISRL, vol. 75, pp. 169–200 (2015)Google Scholar
  18. 18.
    Kim, N.: Automated decision making in road traffic monitoring by on-board unmanned aerial vehicle system. Ind. J. Sci. Technol. 8(S10), 1–6 (2015)Google Scholar
  19. 19.
    Favorskaya, M., Jain, L.C., Buryachenko, V.: Digital video stabilization in static and dynamic scenes. In: Favorskaya, M.N., Jain, L.C. (eds.) Computer Vision in Control Systems-1, ISRL, vol. 73, pp. 261–309. Springer International Publishing, Switzerland (2015)Google Scholar
  20. 20.
    Favorskaya, M., Buryachenko, V.: Fuzzy-based digital video stabilization in static scenes. In: Tsihrintzis, G.A., Virvou, M., Jain, L.C., Howlett, R.J., Watanabe, T. (eds.) Intelligent Interactive Multimedia Systems and Services in Practice, SIST, vol. 36, pp. 63–83. Springer International Publishing, Switzerland (2015)Google Scholar
  21. 21.
    Favorskaya, M., Buryachenko, V.: Fast salient object detection in non-stationary video sequences based on spatial saliency maps. In: De Pietro, G., Gallo, L., Howlett, R.J., Jain, L.C. (eds.) Intelligent Interactive Multimedia Systems and Services, SIST, vol. 55, pp. 121–132. Springer International Publishing, Switzerland (2016)Google Scholar
  22. 22.
    Favorskaya, M., Buryachenko, V., Tomilina, A.: Global motion estimation using saliency maps in non-stationary videos with static scenes. In: De Pietro, G., Gallo, L., Howlett, R.J., Jain, L.C. (eds.) Intelligent Interactive Multimedia Systems and Services, SIST, vol. 55, pp. 133–144. Springer International Publishing, Switzerland (2016)Google Scholar
  23. 23.
    Bogoslovskiy, A.V., Zhigulina, I.V., Bogoslovskiy, E.A., Ponomarev, A.V., Vasilyev, V.V.: Linear Blur. Radiotec, Moscow (in Russian) (2015)Google Scholar
  24. 24.
    Malashin, R.: Correlating images of three-dimensional scenes by clusterizing the correlated local attributes, using the Hough transform. J. Opt. Technol. 81(6), 327–333 (2014)CrossRefGoogle Scholar
  25. 25.
    Malashin, R.: Image retrieval with the use of bag of words and structural analysis. J. Phys: Conf. Ser. 735(1), 12–16 (2016)Google Scholar
  26. 26.
    Malashin, R.: Matching of aerospace photographs with the use of local features. J. Phys.: Conf. Ser. 536(1), 12–18 (2014)Google Scholar
  27. 27.
    Mironovsky, L., Slaev, V.: Invariants in metrology and technical diagnostics. Meas. Tech. 39(6), 577–593 (1996)CrossRefGoogle Scholar
  28. 28.
    Mironovsky, L., Slaev, V.: The strip method of transforming signals containing redundancy. Meas. Tech. 49(7), 631–638 (2006)CrossRefGoogle Scholar
  29. 29.
    Mironowsky, L., Slaev, V.: Double-sided noise-immune strip transformation and its root images. Meas. Tech. 55(10), 1120–1127 (2013); Mironovsky, L., Slaev, V.: Implementation of Hadamard matrices for image processing. In: Favorskaya, M.N., Jain, L.C. (eds.) Computer Vision in Control Systems-1, ISRL, vol. 73, pp. 311–349. Springer International Publishing, Switzerland (2015)Google Scholar
  30. 30.
    Stakhov, A.P.: Fibonacci and Golden Proportion Codes as an Alternative to the Binary Numeral System. Part 1. Academic Publishing, Germany (2012)Google Scholar
  31. 31.
    Borisenko, A.A., Kalashnikov, V.V., Protasova, T.A., Kalashnykova, N.I.: A new approach to the classification of positional numeral systems. In: Neves-Silva, R., Tshirintzis, G.A., Uskov, V., Howlett, R.J., Jain, L.C. (eds.) Frontiers in Artificial Intelligence and Applications (FAIA), vol. 262, pp. 444–450 (2014)Google Scholar
  32. 32.
    Borysenko, O.A., Matsenko, S.M., Polkovnikov, S.I.: A noise-proof Fibonacci counter. Trans. Natl. Technol. Univ. Kharkiv 18, 77–81 (2013) (in Russian)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Informatics and Telecommunications, Reshetnev Siberian State University of Science and TechnologyKrasnoyarskRussian Federation
  2. 2.Faculty of Education, Science, Technology and MathematicsUniversity of CanberraCanberraAustralia
  3. 3.Bournemouth UniversityPooleUK

Personalised recommendations