Advertisement

Vital Signs Telemonitoring by Using Smart Body Area Networks, Mobile Devices and Advanced Signal Processing

  • Hariton CostinEmail author
  • Cristian Rotariu
Chapter
Part of the Intelligent Systems Reference Library book series (ISRL, volume 137)

Abstract

In the last years the demographic changes and ageing of population increase health care demand. The growing number of chronic patients and elders requires close attention to their health conditions. In this paper we present the realization of a wireless remote monitoring system, based on body area network of medical sensors, capable to measure process and transmit patient’s physiologic signals (electrocardiogram, respiratory rhythm, saturation of arterial oxygen, blood pressure and body temperature) to a central medical server. The use of system is suitable for continuous long-time monitoring, as a part of a diagnostic procedure or can achieve medical assistance of a chronic condition. We used custom developed and commercially available devices, low power microcontrollers and RF transceivers that perform measurements and transmit the corresponding numerical values to the Personal Server. The Personal Server, in the form of a personal digital assistant (PDA) or a smartphone, runs a monitor application, receives the physiological signals from the monitoring devices, activates the alarms when the monitored parameters exceed the preset limits, and communicates periodically to the central server by using WiFi or GSM/GPRS connections. The application programs are complemented by automatic atrial fibrillation detection through some advanced signal processing techniques, as well as by patient localization on different maps by means of GPS methodology. Thus, by adding capability of automatic detection of certain heart diseases (for instance), the telemonitoring process becomes “smarter” and more efficient than the traditional approaches based on visualization of raw data.

Keywords

Advanced signal processing Body area networks Mobile devices Vital signs telemonitoring GPS localization Wireless sensor networks 

References

  1. 1.
    Adochiei, F., Rotariu, C., Ciobotariu, R., Costin, H.: A Wireless pulse oximetry system for patient, Advanced Topics in Electrical Engineering. Proceedings of the 7th International Symposium ATEE 2011, pp. 155−158 (2011)Google Scholar
  2. 2.
    Agrawal, D.P.: Personal/Body Area Networks and Healthcare Applications, Book chapter in Embedded sensor systems, pp. 353−390. Springer (2017). https://doi.org/10.1007/978-981-10-3038-3_16
  3. 3.
    Anliker, U., Ward, J.A., Lukowicz, P., et. al.: AMON: A wearable multiparameter medical monitoring and alert system. IEEE Trans. Inf. Technol. Biomed. 8, 415–427 (2004). ISSN: 1089–7771Google Scholar
  4. 4.
    Augustyniak, P.: Remotely programmable architecture of a multi-purpose physiological recorder. Microprocess. Microsyst. 46, 55–66 (2016). https://doi.org/10.1016/j.micpro.2016.07.007 CrossRefGoogle Scholar
  5. 5.
    Berna, S., Bostanci, E.: Opportunities, threats and future directions in big data for medical wearables. Proceedings of the International Conference on Big Data and Advanced Wireless Technologies (2016). https://doi.org/10.1145/3010089.3010100
  6. 6.
    BIOMED-TEL: Acquisition of biomedical signals and their teletransmission through mobile computing devices (in Romanian). http://tc.unitbv.ro/biomed/index_ro.html
  7. 7.
    Boron, W., Boulpaep, E.: Medical Physiology 3. Edn. Elsevier Publ. House (2016). ISBN:9780323427968Google Scholar
  8. 8.
    Bülbül, A., Küçük, S.: Pulse oximeter manufacturing & wireless telemetry for ventilation oxygen support. Int. J. App. Math. Electron. Comput. 4, 211−215 (2016). ISSN: 2147-82282Google Scholar
  9. 9.
    Cardionet: Integrated system for continuous telesurveillance in e-health intelligent network of patients with cardiologic diseases (in Romanian). http://cardionet.utcluj.ro/Raport_tehnic_et2.pdf
  10. 10.
    Castanié, F., Lareng, L., et al.: Universal Remote Signal Acquisition For E-health (U-R-SAFE). HomeCare Concertation meeting June30−July 1, Toulouse, France. http://ursafe.tesa.prd.fr/ursafe/new/ConferencePapers/ConcertationMeeting2003_Ursafe (2003)
  11. 11.
    Chiuchisan, I., et al.: Health care system for monitoring older adults in a “Green” environment using organic photovoltaic devices. Env. Eng. Manag. J. 15(12), 2595−2604 (2016)Google Scholar
  12. 12.
    Ciobotariu, R., Adochiei, F., Rotariu, C., Costin, H.: Wireless breathing system for long term telemonitoring of respiratory activity, Advanced Topics in Electrical Engineering. Proceedings of the 7th International Symposium ATEE 2011, pp. 635−638 (2011)Google Scholar
  13. 13.
    Ciucu, R.-I., et al.: A non-contact heart-rate monitoring system for long-term assessments of HRV, Advanced Topics in Electrical Engineering (ATEE), 2017 10th International Symposium on. IEEE (2017). https://doi.org/10.1109/ATEE.2017.7905060
  14. 14.
    CodeBlue: CodeBlue—Wireless Sensor Networks for Medical Care. http://fiji.eecs. harvard.edu/CodeBlue
  15. 15.
    Connelly, K., et al.: The future of pervasive health. IEEE Pervasive Comput. 16(1), 16−20 (2017). https://doi.org/10.1109/MPRV.2017.17
  16. 16.
    Costin, H., Rotariu, C., et al.: MEDCARE—system for cardiologic telemonitoring through Internet. Med-Surg. J., Iaşi, Rom. 107, No. 3, Supl. 1, 528−533 (2003)Google Scholar
  17. 17.
    Costin, H., Puscocim,S., Rotariu, C., Dionisie B., Cimpoesu, M.: A multimedia telemonitoring network for healthcare. Proceedings of XVII Int. Conference on Computer and Information Science and Engineering, ENFORMATIKA 2006, pp. 113−118. Cairo, Egypt (2006a). ISSN 1305–5313Google Scholar
  18. 18.
    Costin, H., Rotariu, C., Dionisie, B., Ciofea, R., Puscoci, S.: Telemonitoring system for complex telemedicine services. Proceedings of Int. Conference on Computers, Communications & Control, ICCCC 2006, pp. 150−155, June 1−3, Baile Felix Spa, Oradea (2006b)Google Scholar
  19. 19.
    Costin, H., Rotariu, C., et al.: Real time telemonitoring of Medical Vital Signs. In Long C., et al. (eds.) Recent Advances in Biomedical Electronics and Biomedical Informatics. Proceedings of the 2-nd Int. Conf. Biomedical Electronics and Biomedical Informatics-BEBI’09, Moskow, pp. 127−135, ISBN: 978-960-474-110-6 (2009)Google Scholar
  20. 20.
    Costin, H., Rotariu, C., Păsărică, A.: Identification of Psychological Stress by Analyzing Electrocardiographic Signal, Env. Eng. Manag. J. (EEMJ), 12(6), 1255−1263 (2013a). print ISSN: 1582-9596, eISSN: 1843-3707Google Scholar
  21. 21.
    Costin, H., Rotariu, C., Păsărică, A.: A new method for paroxysmal atrial fibrillation automatic prediction. Buletinul Institutului Politehnic din Iasi (Bulletin of Polytechnic Institute of Iasi), Automatic Control and Computer Science Section, Vol. LIX (LXIII), Fasc.1, pp. 71−83 (2013b), ISSN 1220-2169Google Scholar
  22. 22.
    ElMoaqet, H., Almuwaqqat, Z., Saeed, M.: A new algorithm for predicting the progression from paroxysmal to persistent atrial fibrillation. Proceedings of the 9th International Conference on Bioinformatics and Biomedical Technology, pp. 102−106 (2017). https://doi.org/10.1145/3093293.3093311
  23. 23.
    Furmankiewicz, M., Sołtysik-Piorunkiewicz A., Ziuziański P.: Artificial Intelligence and Multi-agent software for e-health Knowledge Management System (in Polish). Informatyka Ekonomiczna 2(32), 51−63 (2014)Google Scholar
  24. 24.
    Ghayvat, H., Mopadhyay, S., X G.: Sensing Technologies for Intelligent Environments: A Review, Intelligent Environmental Sensing, pp. 1–31. Springer International Publishing (2015). https://doi.org/10.1007/978-3-319-12892-4_1
  25. 25.
    Gogate, U., Bakal, J.W.: Smart healthcare monitoring system based on wireless sensor networks, Computing, Analytics and Security Trends (CAST). Int. Conf. IEEE (2016). https://doi.org/10.1109/CAST.2016.7915037 Google Scholar
  26. 26.
    Haulică, I.: Human physiology (in Romanian) 3. Eds. Medical Publ. House, Bucharest (2007). ISBN: 973-39-0597-4Google Scholar
  27. 27.
    HealthService24: Continuous mobile services for healthcare. Final report. http://www.healthservice24.com/Internet/external/healthservice24/images_/D1.5_HS24%20Final%20Report.pdf (2006)
  28. 28.
    Humayun, A., et al.: Impact on the usage of wireless sensor networks in healthcare sector. JCSNS Int. J. Comput. Sci. Netw. Secur. 17(4), 102–105 (2017)Google Scholar
  29. 29.
    Huzooree, G., Khedo, K.K., Joonas, N.: Pervasive mobile healthcare systems for chronic disease monitoring. Health Informat. J. (2017). https://doi.org/10.1177/1460458217704250 Google Scholar
  30. 30.
    Li, Y., et al.: Probability density distribution of delta RR intervals: A novel method for the detection of atrial fibrillation. Australasian Physical & Engineering Sciences in Medicine, pp. 1−10 (2017). https://doi.org/10.1007/s13246-017-0554-2
  31. 31.
    Lian, J., Wang, L., Muessig, D.: A simple method to detect atrial fibrillation using RR intervals. Am. J. Cardiol. 15; 107(10), 1494−1497 (2011)Google Scholar
  32. 32.
    Lin, B-S., Wong, A.M., Tseng, K.: Community-based ECG monitoring system for patients with cardiovascular diseases. J. Med. Syst. 40, (2016). https://doi.org/10.1007/s10916-016-0442-4
  33. 33.
    Malan, D., Fulford-Jones, T., Welsh, M., Moulton, S.: CodeBlue: An Ad Hoc sensor network infrastructure for emergency medical care. MobiSys 2004 Workshop on Applications of Mobile Embedded Systems. http://www.eecs.harvard.edu/~mdw/papers/codeblue-bsn04.pdf (2004)
  34. 34.
    Milenkovic, A., Otto, C., Jovanov, E.: Wireless sensor networks for personal health monitoring: Issues and an implementation. Comput. Commun. Spec. issue: Wireless Sens. Netw.: Perform. Reliab. Secur. Beyond 29, 2521–2533 (2006)Google Scholar
  35. 35.
    MobiHealth, Jones, V., Van Halteren, A., Bults, R., Konstantas, D.: University of Twente, MobiHealth: Mobile Healthcare, Center for Telematics and Information Technology—APS, Netherlads. https://doi.org/http://www.itu.int/itudoc/itu-t/workshop/e-health/wcon/s6con002.pdf
  36. 36.
    Moumtzoglou, A., (ed.): M-health Innovations for Patient-centered Care, Volume in the Advances in Healthcare Information Systems and Administration (AHISA) Book Series IGI Global (2016). ISSN:2328-1243Google Scholar
  37. 37.
    Mukhopadhyay, S.C., Postolache, O.A. (Eds.): Pervasive and mobile sensing and computing for healthcare. Technolo. Soc. Issues; Smart Sens. Meas. Instrum. Volume 2. Springer (2013)Google Scholar
  38. 38.
    Naddeo, S., et. al.: A real-time m-Health monitoring system: An integrated solution combining the use of several wearable sensors and mobile devices. Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017)—Vol. 5: HEALTHINF, pp. 545−552 (2017). ISBN:978-989-758-213-4Google Scholar
  39. 39.
    Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Transact. Biomed. Eng. Vol. BME-32, 230−236 (1985)Google Scholar
  40. 40.
    Puscoci, S., Costin, H., Rotariu, C., et al.: TELMES—Regional medical telecentres. Proceedings of XVII Int. Conference on Computer and Information Science and Engineering, ENFORMATIKA 2006, pp. 243−246. Cairo, Egipt (2006). ISSN 1305-5313Google Scholar
  41. 41.
    Rotariu, C., Costin, H., et al.: E-health system for medical telesurveillance of chronic patients. Int. J. Comput. Commun. Control 5(5), 900−909 (2010). ISSN:1841-9836Google Scholar
  42. 42.
    Rotariu, C., Pasarica, Al., Costin, H., et. al.: Telemedicine system for remote blood pressure and heart rate monitoring. Proceedings of the 3rd International Conference on E-Health and Bioengineering—EHB 2011, 24–26 Nov. 2011, pp. 127−130 (2011a)Google Scholar
  43. 43.
    Rotariu, C., Costin, H., Andruseac, G., Ciobotariu, R., Adochiei, F.: An integrated system for wireless monitoring of chronic patients and elderly people. Proceedings of the 15th International Conference on System Theory, Control and Computing, Sinaia, Oct. 14−16, pp. 527−530 (2011b)Google Scholar
  44. 44.
    Rotariu, C., Arotaritei, D., Manta, V.: Wireless system for remote monitoring of atrial fibrillation. Proceedings of the 5th European DSP Education & Research Conference EDERC 2012, Amsterdam, The Netherlands, September 13−14, pp. 129−133 (2012a)Google Scholar
  45. 45.
    Rotariu, C., Manta, V.: Wireless system for remote monitoring of oxygen saturation and heart rate. Proceedings of the Federated Conference on Computer Science and Information Systems, FedCSIS 2012, Wrocław, Poland, September 9−12, pp. 215−218 (2012b)Google Scholar
  46. 46.
    Rotariu, C, Costin, H.: Remote respiration monitoring system for sleep apnea detection. Med-Surg. J. 117(1), 268−274 (2013a)Google Scholar
  47. 47.
    Rotariu, C., Manta, V., Ciobotariu, R.: Integrated system based on wireless sensors network for cardiac arrhythmia monitoring. Adv. Electr. Comput. Eng. 13(1), 95−100 (2013b)Google Scholar
  48. 48.
    Rotariu, C., Costin, H., Păsărică, A., Cristea, A., Dionisie, B.: Wireless skin temperature measurement system for circadian rhythm monitoring. Procedingd. of the 4th IEEE International Conference E-Health and Bioengineering—"EHB 2013”, Iasi, Romania, 21−23 (2013c). ISBN 978-1-4799-2373-1Google Scholar
  49. 49.
    Rotariu, C., Costin, H., Ciobotariu, R., Păsărică, Al., Cristea, C.: Real-time system for continuous and remote monitoring of respiration during sleep using wireless sensors networks. IFMBE Proceedings, 44, 83−86, Proceedings of “MediTech 2014” conference, Cluj-Napoca, Romania, 5−7th June (2014)Google Scholar
  50. 50.
    Rotariu C., et al.: Continuous respiratory monitoring device for detection of sleep apnea episodes. Design and Technology in Electronic Packaging (SIITME), 2016 IEEE 22nd International Symposium for. IEEE, (2016). https://doi.org/10.1109/SIITME.2016.7777255
  51. 51.
    Rubel, P., Fayn, J., Atoui, H., Télisson, D.: Beyond EPI-MEDICS, 2nd OpenECG Workshop, Berlin, Germany (2004)Google Scholar
  52. 52.
    Rubel, P., Fayn, J., et al.: Toward personal eHealth in cardiology. Results EPI-MEDICS Telemedicine Proj. 38(4), 100–106 (2005)Google Scholar
  53. 53.
    Sokolova, A.A., et al.: Analysis of QRS detection algorithms barely sensitive to the QRS shape, Young Researchers in Electrical and Electronic Engineering (EIConRus), 2017 IEEE Conference of Russian pp. 738−740 (2017). https://doi.org/10.1109/EIConRus.2017.7910663
  54. 54.
    TELEASIS: Complex System on NGN support for home tele-assistance of elderly people (in Romanian). http://www.teleasis.ro
  55. 55.
    Triantafyllidis, A.K., et al.: A survey of mobile phone sensing, self-reporting, and social sharing for pervasive healthcare. IEEE J. Biomed. Health Inform. 21(1), 218–227 (2017). https://doi.org/10.1109/JBHI.2015.2483902
  56. 56.
    Varshney, U.: Pervasive healthcare computing. Springer LLC (2009). ISBN: 978-1-4419-0214-6Google Scholar
  57. 57.
    Vizza, P., et al.: A framework for the atrial fibrillation prediction in electrophysiological studies. Comput. Methods and Programs Biomed. 120(2), 55−76 (2015). https://doi.org/10.1016/j.cmpb.2015.04.001
  58. 58.
    Xu, H., Hua, K.: Secured ECG signal transmission for human emotional stress classification in wireless body area networks. EURASIP J. Inform. Secur. (2016). https://doi.org/10.1186/s13635-015-0024-x Google Scholar
  59. 59.
    Yang, X., Hui, C. (Eds.): Mobile telemedicine: A computing and Networking Perspective. CRC Press (2008)Google Scholar

Resource List

  1. I.
    Books and Articles Google Scholar
  2. 60.
    Mukhopadhyay, S.C., Postolache, O.A. (Eds.): Pervasive and mobile sensing and computing for healthcare. Technological and Social Issues, Springer (2013). ISBN: 978-3-642-32537-3 (Print) 978-3-642-32538-0 (Online)Google Scholar
  3. 61.
    Chana, M., Campoa, E., Estèvea, D., Fourniolsa, J.-Y.: Smart homes—current features and future perspectives. Elsevier, Maturitas 64(2), 90–97 (2009)CrossRefGoogle Scholar
  4. 62.
    Choi, J., Kim, D.K.: A remote compact sensor for the real-time monitoring of human heartbeat and respiration rate. IEEE Trans. Biomed. Circuits Syst. 3(3), 181–188 (2009)CrossRefGoogle Scholar
  5. 63.
    Dilmaghani, R.S., Bobarshad, H., Ghavami, M., Choobkar, S., Wolfe, C.: Wireless sensor networks for monitoring physiological signals of multiple patients. IEEE Trans. Biomed. Circuits Syst. 5(4), 347–356 (2011)CrossRefGoogle Scholar
  6. 64.
    Krishnamachari, B.: Networking Wireless Sensors. Cambridge University Press (2006)Google Scholar
  7. 65.
    Istepanian, R., Laxminarayan, S., Pattichis, C.S. (Eds.): M-Health: Emerging Mobile Health Systems. Springer (2005)Google Scholar
  8. 66.
    Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. IEEE Commun. Mag. 140−150 (2010)Google Scholar
  9. 67.
    Briggs, J.S., Adams, C., Fallahkhair, S., Iluyemi, A., Prytherch, D.: M-health review: Joining up healthcare in a wireless world. University of Portsmouth, UK, Technical Report. http://eprints.port.ac.uk (2012)
  10. 68.
    Axisa, F., Schmitt, P.M., Gehin, C., Delhomme, G., McAdams, E., Dittmar, A.: Flexible technologies and smart clothing for citizen medicine home healthcare, and disease prevention. IEEE Trans. Inform. Technolo. Biomed. 9(3), 325–336 (2005)CrossRefGoogle Scholar
  11. 69.
    Kulkarni, P., Öztürk, Y.: Requirements and design spaces of mobile medical care. ACM SIGMOBILE Mobile Computing and Communications Review 11, 12–30 (2007)CrossRefGoogle Scholar
  12. 70.
    Varshney, U.: Pervasive healthcare and wireless health monitoring. Mob. Netw. Appl. 12, 113–127 (2007)CrossRefGoogle Scholar
  13. 71.
    Akkaya, K., Younis, M.: A survey on routing protocols for wireless sensor networks. Elsevier Ad Hoc Netw. J. 3(3), 325–349 (2005)CrossRefGoogle Scholar
  14. 72.
    Falk, T., Baldus, H., Espina, J., Klabunde, K.: Plug ‘n play simplicity for wireless medical body sensors. Mob. New. Appl. 12, 143–153 (2007)CrossRefGoogle Scholar
  15. 73.
    Neves, P., Stachyra, M., Rodrigues, J.: Application of wireless sensor networks to healthcare promotion. J. Commun. Softw. Syst. 4(3), 181−190 (2008). ISSN: 1845-6421Google Scholar
  16. 74.
    Shnayder, V., Chen, B.-r., Lorincz, K., Fulfor-Jones, T., Welsh, M.: “Sensor Networks for Medical Care.” Harvard University (2005)Google Scholar
  17. 75.
    Tang, C.: Comprehensive energy efficient algorithm for WSN, INT. J. Comput. Commun. Control 9(2):209−216 (2014). ISSN 1841-9836Google Scholar
  18. 76.
    Chang, K.-M., Liu, S.-H.: Wireless portable electrocardiogram and a tri-Axis accelerometer implementation and application on sleep activity monitoring. TELEMEDICINE and e-HEALTH, MARY ANN LIEBERT, Inc. 17(3), 177−184 (2011)Google Scholar
  19. 77.
    Stiel, I.G., Spaite, D.W., Field, B., et al.: OPALS Study group. Advanced life support for out-of hospital respiratory distress. New England J. Med. 356, 2156−2164 (2007)Google Scholar
  20. 78.
    Wu, W.H., Bui, A.A.T., Batalin, M.A., Au, L.K., Binney, J.D., Kaiser, W.J.: MEDIC: Medical embedded device for individualized care. Artif. Intell. Med. Elsevier 42, 137–152 (2008)CrossRefGoogle Scholar

II. Web Resources

  1. 79.
    IEEE 802.15 WPAN Task Group 6 (TG6)—Body Area Networks, URL: http://www.ieee802.org/15/pub/TG6.html
  2. 80.
    The promise of Wireless Sensor Networks for Medicine, URL: http://www.intel.com/research/exploratory/wireless_promise.htm
  3. 81.
  4. 82.
    AlarmNet—Assisted-Living and Residential Monitoring Network, URL: http://www.cs.virginia.edu/wsn/medical/index.htmlGoogle Scholar
  5. 83.
    Economist Intelligent Unit “The future of healthcare in Europe”, The Economist, on-line http://www.eufutureofhealthcare.com/sites/default/files/EIUJanssen%20Healthcare_Web%20version.pdf
  6. 84.
    National Center for Health Statistics, URL: http://www.cdc.gov/nchs/Default.htm
  7. 85.
    Mobihealth project, URL: http://www.mobihealth.org
  8. 86.
    THALEA project, URL: www.thalea-pcp.eu
  9. 87.
    Telecare Services Association, http://www.telecare.org.uk/about-us
  10. 88.
    VitalJacket form Biodevices, SA (Portugal), URL: http://www.vitaljacket.com/
  11. 89.
    “Telemedicine and e-Health” journal, http://www.liebertpub.com/TMJhttp://www.liebertpub.com/TMJ
  12. 90.
    United States Department of Health and Human Services. (2007) Personalized Health Care: opportunities, pathways, resources. on line at http://www.liebertpub.com/TMJhttp://www.hhs.gov/myhealthcare/news/phc-report.pdf

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Medical BioengineeringGrigore T, Popa University of Medicine and PharmacyIasiRomania
  2. 2.Institute of Computer Science of Romanian AcademyIași BranchRomania

Personalised recommendations