Applications of Industrial Symbiosis

  • Xiaohong LiEmail author


Industrial Symbiosis (IS), a study area within Industrial Ecology (IE), focuses on the knowledge web establishment of novel exchanges for synergies among companies to develop industrial ecosystems. Three types of IS applications have been explored in the literature: regional community -based IS, national IS programmes and eco-industrial parks (EIPs) . These IS applications have offered valuable lessons. Critical success factors drawn from these practices are: an IS coordinating centre , economic and environmental gains in the vision, a large database of knowledge webs for potential symbiotic exchanges, early involvement of participating companies, and government investment at the start. IS applications need not be restricted by geographic proximity. Industrial clusters also need to be transformed into eco-industrial clusters. The transformation requires planned and facilitated IS and long-term vision.


Industrial symbiosis applications Kalundborg industrial symbiosis (IS) The UK national IS programme (NISP) Eco-Industrial parks (EIPs) Geographic proximity Eco-Industrial clusters (EICs) 


  1. Bansal, P., & McKnight, B. (2009). Looking forward, pushing back and peering sideways: Analyzing the sustainability of industrial symbiosis. Journal of Supply Chain Management, 45, 26–37.Google Scholar
  2. Boix, M., Montastruc, L., Azzaro-Pantel, C., & Domenech, S. (2015). Optimization methods applied to the design of eco-industrial parks: A literature review. Journal of Cleaner Production, 87, 303–317.CrossRefGoogle Scholar
  3. Branson, R. (2016). Re-structuring Kalundborg: The reality of bilateral symbiosis and other insights. Journal of Cleaner Production, 112, 4344–4352.CrossRefGoogle Scholar
  4. Chertow, M. (2000). Industrial symbiosis: Literature and taxonomy. Annual Review of Energy and the Environment, 25, 313–317.CrossRefGoogle Scholar
  5. Chertow, M., & Ehrenfeld, J. (2012). Organizing self-organising system, towards a theory of Industrial Symbiosis. Journal of Industrial Ecology, 16(1), 13–27.CrossRefGoogle Scholar
  6. Cushman-Roisin, B. (2013). The first tool of Industrial Ecology: Eco-Industrial Parks. Accessed February, 2017.
  7. Domenech, T., & Davies, M. (2011). Structure and morphology of industrial symbiosis network: The case of Kalundborg. Procedia Social and Behavioral Sciences, 10, 79–89.CrossRefGoogle Scholar
  8. Dunn, B. C., & Steinemann, A. (1998). Industrial ecology for sustainable communities. Journal of Environmental Planning and Management, 41(6), 661–672.CrossRefGoogle Scholar
  9. Ehrenfeld, J. (1997). Industrial ecology: A framework and process design. Journal of Cleaner Production, 5(1–2), 87–95.CrossRefGoogle Scholar
  10. Ehrenfeld, J., & Gertler, N. (1997). Industrial Ecology in Practice: The Evolution of Interdependence at Kalundborg. Journal of Industrial Ecology, 1 (1), 67–79.Google Scholar
  11. Frosch, R. A., & Gallopoulos, N. E. (1989). Strategies for Manufacturing. Scientific American, 261 (3), 144–152.Google Scholar
  12. Gibbs, D., & Deutz, P. (2005). Implementing industrial ecology? Planning for eco-industrial parks in the USA, Geoforum, 36, 452–464.Google Scholar
  13. Gibbs, D., & Deutz, P. (2007). Reflections on implementing industrial ecology through eco-industrial park development. Journal of Cleaner Production, 15, 1683–1695.CrossRefGoogle Scholar
  14. Grekova, K., Bremmers, H. J., Trienekens, J. H., Kemp, R. G. M., & Omta, S. W. F. (2014). Extending environmental management beyond the firm boundaries: An empirical study of Dutch food and beverage firms. International Journal of Production Economics, 152, 174–187.CrossRefGoogle Scholar
  15. Hashimoto, S., Fujita, T., Geng, Y., & Nagasawa, E. (2010). Realizing CO2 emission reduction through industrial symbiosis: A cement production case study for Kawasaki. Resources, Conservation and Recycling, 54 (10), 704–710.Google Scholar
  16. Heeres, R. R., Vermulen, W. J. V., & de Walle, F. B. (2004). Eco-industrial park initiatives in the USA and the Netherlands: First lessons. Journal of Cleaner Production, 12, 985–995.CrossRefGoogle Scholar
  17. Jacobsen, N. B. (2006). Industrial symbiosis in Kalundborg, Denmark: A quantitative assessment of economic and environmental aspects. Journal of Industrial Ecology, 10(1–2), 239–255.Google Scholar
  18. Jensen, P. D., Basson, L., Hellawell, E., Bailey, M. R., & Leach, M. (2011). Quantifying ‘geographic proximity’: Experiences from United Kingdom’s National Industrial Symbiosis Programme. Resources, Conservation and Recycling, 55, 703–712.CrossRefGoogle Scholar
  19. Leigh, M., & Li, X. (2015). Industrial ecology, industrial symbiosis and supply chain environmental sustainability: A case study of a large UK distributor. Journal of Cleaner Production, 106, 632–643.CrossRefGoogle Scholar
  20. Letaifa, S. B., & Rabeau, Y. (2013). Too close to collaborate? How geographic proximity could impede entrepreneurship and innovation. Journal of Business Research, 16, 28–37.Google Scholar
  21. Lombardi, D. R., & Laybourn, P. (2012). Redefining industrial symbiosis. Journal of Industrial Ecology, 16, 28–37.CrossRefGoogle Scholar
  22. Lowe, E. A. (1997). Creating by-product resource exchanges: Strategies for eco-industrial parks. Journal of Cleaner Production, 5 (1–2), 57–65.Google Scholar
  23. Lowe, E. (2001). Eco-Industrial Handbook for Asian Developing Countries, prepared for the Environment Department, Asian Development Bank.
  24. Lowe, E., & Evans, L. (1995). Industrial ecology and industrial ecosystems. Journal of Cleaner Production, 3(1–2), 47–53.CrossRefGoogle Scholar
  25. Lu, Y., Chen, B., Feng, K., & Hubacek, K. (2015). Ecological network analysis for carbon metabolism of eco-industrial parks: A case study of a typical eco-industrial park in Beijing. Environmental Science and Technology, 49(12), 7254–7264.CrossRefGoogle Scholar
  26. Mirata, M. (2004). Experiences from early stages of a national industrial symbiosis programme in the UK: Determinants and coordination challenges. Journal of Cleaner Production, 12, 967–983.CrossRefGoogle Scholar
  27. NISP (National Industrial Symbiosis Programme). (2017). Accessed 16 March, 2017.
  28. Park, H.-S., Rene, E. R., Choi, S.-M., & Chiu, A. S. F. (2008). Strategies for sustainable development of industrial park in Ulsan, South Korea-From spontaneous evolution to systematic expansion of industrial symbiosis. Journal of Environmental Management, 87, 1–13.CrossRefGoogle Scholar
  29. Park, J. M., Park, J. Y., & Park, H.-S. (2016). A review of the eco-industrial park development program in Korea: Progress and achievement in the first phase, 2005–2010. Journal of Cleaner Production, 114, 33–44.Google Scholar
  30. Pearce, J. M. (2008). Industrial symbiosis of very large-scale photovoltaic manufacturing. Renewable Energy, 33 (5), 1101–1108.Google Scholar
  31. Porter, M. E. (1998). Clusters and the new economics of competition. Harvard Business Review, 76(6), 77–90.Google Scholar
  32. Shi, H., Chertow, M., & Song, Y. (2010). Developing country experience with eco-industrial parks: a case study of the Tianjin Economic-Technological Development Area in China. Journal of Cleaner Production, 18, 191–199.CrossRefGoogle Scholar
  33. Taddeo, R., Simboli, A., & Morgante, A. (2012). Implementing eco-industrial parks in existing clusters. Findings from a historical Italian chemical site. Journal of Cleaner Production, 33, 22–29.CrossRefGoogle Scholar
  34. Tian, J., Liu, W., Lai, B., Li, X., & Chen, L. (2014). Study of the performance of eco-industrial park development in China. Journal of Cleaner Production, 64, 486–494.Google Scholar
  35. Tibbs, H. (1992). Industrial ecology, an environmental agenda for industry, Whole Earth Review, Winter, 4–19.Google Scholar
  36. Valdaliso, J. M., Elola, A., & Orkestra, S. F. (2016). Do clusters follow the industry life cycle? Diversity of cluster evolution in old industrial regions. Competitiveness Review, 26(1), 66–86.CrossRefGoogle Scholar
  37. Valentine, S. V. (2016). Kalundborg Symbiosis: Fostering progressive innovation in environmental networks. Journal of Cleaner Production, 118, 65–77.CrossRefGoogle Scholar
  38. Velenturf, A. P. M. (2016). Promoting industrial symbiosis: Empirical observation of low-carbon innovations in the Humber region, UK. Journal of Cleaner Production, 128, 116–130.CrossRefGoogle Scholar
  39. Yu, C., Dijkema, G., & de Jong, M. (2014). What makes eco-transformation of industrial parks take off in China? Journal of Industrial Ecology, 19(3), 441–456.CrossRefGoogle Scholar
  40. Zhang, L., Yuan, Z., Bi, J., Zhang, B., & Liu, B. (2010). Eco-industrial parks: national pilot practices in China. Journal of Cleaner Production, 18 (5), 504–509.Google Scholar
  41. Zhang, Y., Qiao, Q., & Yao, Y. (2015). Study of Eco-Industrial Park Concept and Connotation. Applied Mechanics and Materials, 737, 974–979.Google Scholar
  42. Zhu, Q., Lowe, E. A., Wei, Y.-A., & Barnes, D. (2007). Industrial Symbiosis in China: A Case Study of the Guitang Group. Journal of Industrial Ecology, 11 (1), 31–42.Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.SheffieldUK

Personalised recommendations