Skip to main content

Aerosol Properties over Kuching, Sarawak from Satellite and Ground-Based Measurements

  • Chapter
  • First Online:

Part of the book series: Springer Remote Sensing/Photogrammetry ((SPRINGERREMO))

Abstract

The effect of aerosols on the global and regional climate can be understood through an insight into the properties of aerosols. In this article, the optical properties of aerosols were analyzed through the ground-based Aerosol Robotic Network (AERONET) and MODIS satellite data over Kuching city in northwestern Sarawak. This study deals with the optical properties of aerosols: aerosol optical depth (AOD), Angstrom exponent (α), single scattering albedo (SSA), and the asymmetry factor (ASY) during 2011–2012 over Kuching city, Sarawak, Malaysia. The results show that the variability in optical properties of aerosols can be determined by the type of aerosol or the source of the aerosol. In the study area, higher concentrations are encountered due to the presence of aerosol from urban activities, especially during the dry season. While monsoonal rainfall tends to reduce aerosol concentrations by washing aerosols out of the atmosphere, their effect is still significant during the wet season.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Afroz R, Hassan MN, Ibrahim NA (2003) Review of air pollution and health impacts in Malaysia. Environ Res 92(2):71–77

    Article  Google Scholar 

  • Alam K, Trautmann T, Blaschke T (2011) Aerosol optical properties and radiative forcing over mega-city Karachi. Atmos Res 101:773–782

    Article  Google Scholar 

  • Ali M, Tariq S, Mahmood K, Daud A, Batool A, Haq Z (2014) A study of aerosol properties over Lahore (Pakistan) by using AERONET data. Asia-Pac J Atmos Sci 50(2):153–162

    Article  Google Scholar 

  • Badarinath KVS, Kharol SK, Latha KM, Chand TR, Prasad VK, Jyothsna AN, Samatha K (2007) Multiyear ground-based and satellite observations of aerosol properties over a tropical urban area in India. Atmos Sci Lett 8(1):7–13

    Article  Google Scholar 

  • Badarinath KVS, Kharol SK, Krishna Prasad V, Kaskaoutis DG, Kambezidis HD (2008) Variation in aerosol properties over Hyderabad, India during intense cyclonic conditions. Int J Remote Sens 29(15):4575–4597

    Article  Google Scholar 

  • Badarinath KVS, Sharma AR, Kharol SK, Prasad VK (2009) Variations in CO, O3 and black carbon aerosol mass concentrations associated with planetary boundary layer (PBL) over tropical urban environment in India. J Atmos Chem 62(1):73–86

    Article  Google Scholar 

  • Cheng AYS, Chan MH, Yang X (2006) Study of aerosol optical thickness in Hong Kong, validation, results, and dependence on meteorological parameters. Atmos Environ 40:4469–4477

    Article  Google Scholar 

  • Chu DA, Kaufman YJ, Ichoku C, Remer LA, Tanre D, Holben BN (2002) Validation of MODIS aerosol optical depth retrieval over land. Geophys Res Lett 29(12). https://doi.org/10.1029/2001IGL013205

  • Chung CE, Ramanathan V, Kim D, Podgorny LA (2005) Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. J Geophys Res 110:D24207. https://doi.org/10.1029/2005JD006356

    Article  Google Scholar 

  • City of Kuching Ordinance (1988) Sarawak State Attomey-General’s chambers. p 3, Chapter 48

    Google Scholar 

  • Dominick D, Latif MT, Juahir H, Aris AZ, Zain SM (2012) An assessment of influence of meteorological factors on PM10 and NO2 at selected stations in Malaysia. Sustain Environ Res 22(5):305–315

    Google Scholar 

  • Dubovik O, Holben BN, Eck TF, Smirnov A, Kaufman YJ, King MD, Tanre D, Slutsker I (2002) Variability of absorption and optical properties of key aerosol types in worldwide location. J Atmos Sci 59:590–608

    Article  Google Scholar 

  • Eck TF, Holben BN, Reid JS, Dubovik O, Smirnov A, O’Neill NT, Slutsker I, Kinne S (1999) Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J Geophys Res 104:333–349

    Article  Google Scholar 

  • Eck TF, Holben BN, Dubovik O, Smirnov A, Goloub P, Chen HB, Chatenet B, Gomes L, Zhang X-Y, Tsay S-C, Ji Q, Giles D, Slutsker I (2005) Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific. J Geophys Res 110:D06202. https://doi.org/10.1029/2004JD005274

    Article  Google Scholar 

  • Gadhavi H, Jayaraman A (2010) Absorbing aerosols: contribution of biomass burning and implications for radiative forcing. Ann Geophys 28:103–111

    Article  Google Scholar 

  • Gupta P, Christopher SA, Wang J, Gehrig R, Lee Y, Kumar N (2006) Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos Environ 40:5880–5892

    Article  Google Scholar 

  • Hayasaka H, Noguchi I, Putra EI, Yulianti N, Vadrevu K (2014) Peat-fire-related air pollution in Central Kalimantan, Indonesia. Environ Pollut 195:257–266

    Article  Google Scholar 

  • Higurashi A, Nakajima T (2002) Detection of aerosol types over the East China Sea near Japan from four-channel satellite data. Geophys Res Lett 29(17):1836. https://doi.org/10.1029/2002GL015357

    Article  Google Scholar 

  • Holben BN, Eck TF, Slutsker I, Tanre D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) Remote Sens Environ 66:1–16

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basic. Cambridge University Press, Cambridge

    Google Scholar 

  • Jamhari AA, Sahani M, Latif MT, Chan KM, Tan HS, Khan MF, Tahir NM (2014) Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and semi urban areas in Malaysia. Atmos Environ 86:16–27

    Article  Google Scholar 

  • Kambezidis HD, Kaskaoutis DG (2008) Aerosol climatology over four AERONET sites: an overview. Atmos Environ 42:1892–1906

    Article  Google Scholar 

  • Kanniah KD, Lim HQ, Kaskaoutis DG, Cracknell AP (2014) Investigating aerosol properties in Peninsular Malaysia via the synergy of satellite remote sensing and ground-based measurements. Atmos Res 138:223–230

    Article  Google Scholar 

  • Kant Y, Ghosh AB, Sharma MC, Gupta PK, Prasad VK, Badarinath KVS, Mitra AP (2000) Studies on aerosol optical depth in biomass burning areas using satellite and ground-based observations. Infrared Phys Technol 41(1):21–28

    Article  Google Scholar 

  • Kaskaoutis DG, Kambezidis HD, Hatzianastassiou N, Kosmopoulos PG, Badarinath KVS (2007) Aerosol climatology: dependence of the Angstrom exponent on wavelength over four AERONET sites. Atmos Chem Physc Discuss 7:7347–7397

    Article  Google Scholar 

  • Kaufman YJ, Tanre D, Gordon HR, Nakajima T, Lenoble J, Frouin R, Grassi H, Herman BM, King MD, Teillet PM (1997) Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. J Geophys Res 102(D14):16815–16830

    Article  Google Scholar 

  • Kaufman YJ, Boucher O, Tanré D, Chin M, Remer LA, Takemura T (2005) Aerosol anthropogenic component estimated from satellite data. Geophys Res Lett 4. https://doi.org/10.1029/2005GL023125

  • Kaufman YJ, Tanre D, Gordon HR, Nakajima T, Lenoble J, Frouin R, Grassl H, Herman BM, King MD, Teillet PM (2007) Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. J Geophys Res 102:16815–16830

    Article  Google Scholar 

  • Kedia S, Ramachandran S, Holben BN, Tripathi SN (2014) Quantification of aerosol type, and sources of aerosols over the Indo-Gangetic Plain. Atmos Environ 98:607-619

    Google Scholar 

  • King MD, Kaufman YJ, Tanre D, Nakajima T (1999) Remote sensing of tropospheric aerosols from space: past, present and future. Bull Am Meteorol Soc 80(11):2229–2259

    Article  Google Scholar 

  • Kosmopoulus PG, Kaskaoutis DG, Nastos PT, Kambezidis HD (2008) Seasonal variation of columnar aerosol optical properties over Athens, Greece, based on MODIS data. Remote Sens Environ 112:2354–2366

    Article  Google Scholar 

  • Le TH, Nguyen TNT, Lasko K, Ilavajhala S, Vadrevu KP, Justice C (2014) Vegetation fires and air pollution in Vietnam. Environ Pollut 195:267–275

    Article  Google Scholar 

  • Lee J, Kim J, Song CH, Kim SB, Chun Y, Sohn BJ, Holben BN (2010) Characteristics of aerosol types from AERONET sunphotometer measurements. Atmos Environ 44:2110–2117

    Google Scholar 

  • Levy RC, Remer LA, Kleidman RG, Mattoo S, Ichoku C, Kahn R, Eck TF (2010) Global evaluation of the collection 5 MODIS dark-target aerosol products over land. Atmos Chem Phys Discuss 10:14815–14873

    Article  Google Scholar 

  • Liu J, Zheng Y, Li Z, Wu R (2008) Ground-based remote sensing of aerosol optical properties in one city in Northwest China. Atmos Res 89:194–205

    Article  Google Scholar 

  • Lohmann U, Feichter J (1997) Impact of sulfate aerosols on albedo and lifetime of clouds: a sensitivity study with the ECHAM4 GCM. J Geophys Res 102(D12):13685–13700

    Article  Google Scholar 

  • Annual Report from Malaysian Meteorological Department (2012) Available from http://www.met.gov.my/in/web/metmalaysia/publications/annualreport

  • Matheson MA, Coakley JA, Tahnk WR (2005) Aerosol and cloud property relationships for summertime stratiform clouds on the northeastern Atlantic from Advanced Very High Resolution Radiometer observations. J Geophys Res 110:D24

    Article  Google Scholar 

  • Mishra AK, Klingmueller K, Fredj E, Lelieveld J, Rudich Y, Koren I (2014) Radiative signature of absorbing aerosol over the eastern Mediterranean basin. Atmos Chem Phys 14:7213–7231

    Article  Google Scholar 

  • Nakajima T, Higurashi A, Kawamoto K, Penner JE (2001) A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophys Res Lett 28(7):1171–1174

    Article  Google Scholar 

  • Prasad AK, Singh RP (2007) Comparison of MISR- MODIS Aerosol Optical Depth over INDO-Gangatic Basin during the Winter and Premonsoon Seasons (2000-2005). Remote Sens Environ 107:109–119

    Google Scholar 

  • Reid JS, Hyer EJ, Johnson RS et al (2013) Observing and understanding the Southeast Asian aerosol system by remote sensing: an initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program. Atmos Res 122:403–468

    Article  Google Scholar 

  • Remer L, Kaufman Y, Tanré D, Mattoo S, Chu D, Martins J, Ichoku R, Levy R, Kleidman R, Eck T, Vermote E, Holben B (2005) The MODIS aerosol algorithm, products, and validation. J Atmos Sci 62:947–973

    Article  Google Scholar 

  • Rozwadowska A, Sobolewski P (2010) Variability in aerosol optical properties at Hornsund, Spitsbergen. Oceanologia 52(4):599–620

    Article  Google Scholar 

  • Salinas SV, Chew BN, Liew SC (2009) Retrievals of aerosol optical depth and Angstrom exponent from ground-based Sun-photometer data of Singapore. Appl Optics 48:8

    Article  Google Scholar 

  • Salinas SV, Chew BN, Mohamad M, Mahmud M, Liew SC (2013) First measurements of aerosol optical depth and Angstrom exponent number from AERONET’s Kuching site. Atmos Environ 78:231–241

    Article  Google Scholar 

  • Singh S, Soni K, Bano T, Tanwar RS, Nath S, Arya BC (2010) Clear sky direct aerosol radiative forcing variations over mega-city Delhi. Ann Geophys 28:1157–1166

    Article  Google Scholar 

  • Smirnov A, Holben BN, Kaufman YJ, Dubovik O, Eck TF, Slutsker I, Pietras C, Halthore RN (2002) Optical properties of atmospheric aerosol in maritime environments. J Atmos Sci 59:501–523

    Article  Google Scholar 

  • Sumit K, Devara PCS, Manoj MG (2012) Multi-size characterization of tropical aerosols: implications for regional radiative forcing. Atmos Res 106:71–85

    Article  Google Scholar 

  • Toledano C, Cachorro VE, Berjon A, De Frutos AM, Sorribas M, De la Morena BA, Goloub P (2007) Aerosol optical depth and Angstrom exponent climatology at El Arenosillo AERONET site (Huelva, Spain). Q J Roy Meteorol Soc 133:795–807

    Article  Google Scholar 

  • Tripathi SN, Sagnik D, Chandel A, Srivastava S, Singh RP, Holben BN (2005) Comparison of MODIS and AERONET derived aerosol optical depth over the Ganga Basin, India. Ann Geophys 23:1093–1101

    Article  Google Scholar 

  • Tulloch M, Li J (2004) Applications of satellite remote sensing to urban air quality monitoring: status and potential solutions to Canada. Environ Inform Arch 2:846–854

    Google Scholar 

  • Vadrevu KP, Ellicott E, Badarinath KVS, Vermote E (2011) MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, north India. Environ Pollut 159(6):1560–1569

    Article  Google Scholar 

  • Vadrevu KP, Ellicott E, Giglio L, Badarinath KVS, Vermote E, Justice C, Lau WK (2012) Vegetation fires in the himalayan region–aerosol load, black carbon emissions and smoke plume heights. Atmos Environ 47:241–251

    Article  Google Scholar 

  • Vadrevu KP, Lasko K, Giglio L, Justice C (2014) Analysis of Southeast Asian pollution episode during June 2013 using satellite remote sensing datasets. Environ Pollut 195:245–256

    Article  Google Scholar 

  • Vadrevu KP, Lasko K, Giglio L, Justice C (2015) Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia. Environ Res Lett 10(10):105003

    Article  Google Scholar 

  • Verma N, Bagare SP, Ningombam SS, Singh RB (2010) Aerosol optical properties retrieved using Skyradiometer at Hanle in western Himalayas. J Atmos Sol Terr Phys 72:115–124

    Article  Google Scholar 

  • Widory D, Negrel P (2009) Urban aerosols. Geosciences 1:46–52

    Google Scholar 

  • Zawadzka O, Markowicz KM, Pietruczuk A, Zielinski T, Jaroslawski J (2013) Impact of urban pollution emitted in Warsaw on aerosol properties. Atmos Environ 69:15–28

    Article  Google Scholar 

  • Zhao M, Heinsch FA, Nemani RR, Running SW (2005) Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens Environ 95(2):164–176

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the PIs for their effort in establishing and maintaining Kuching sites for the provision of AERONET data and are grateful to the MODIS teams at NASA for the provision of satellite data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnis Asmat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Asmat, A., Jalal, K.A., Deros, S.N.M. (2018). Aerosol Properties over Kuching, Sarawak from Satellite and Ground-Based Measurements. In: Vadrevu, K., Ohara, T., Justice, C. (eds) Land-Atmospheric Research Applications in South and Southeast Asia. Springer Remote Sensing/Photogrammetry. Springer, Cham. https://doi.org/10.1007/978-3-319-67474-2_21

Download citation

Publish with us

Policies and ethics