Multi-scale Simulations of Atmospheric Pollutants Using a Non-hydrostatic Icosahedral Atmospheric Model

  • Daisuke Goto
  • Teruyuki Nakajima
  • Dai Tie
  • Hisashi Yashiro
  • Yousuke Sato
  • Kentaroh Suzuki
  • Junya Uchida
  • Shota Misawa
  • Ryoma Yonemoto
  • Tran Thi Ngoc Trieu
  • Hirofumi Tomita
  • Masaki Satoh
Chapter
Part of the Springer Remote Sensing/Photogrammetry book series (SPRINGERREMO)

Abstract

We have developed a seamless global-to-regional model to calculate atmospheric aerosol chemistry by coupling existing aerosol and chemical modules to a global cloud-system-resolving model (NICAM-Chem). The model can simulate air pollutants with various grid sizes ranging from global low resolution (~200 km) on yearly scales to regional high resolution (~10 km) on monthly scales and global high resolution (<10 km) on weekly scales. To date, we have confirmed that the NICAM-Chem simulated aerosols at low-to-high resolutions, and global-to-regional scales are generally comparable to validated observations. Furthermore, the very recent availability of cutting-edge computational capabilities provided by the K computer at RIKEN in Japan enabled us to perform seasonal air pollution simulations with a high global resolution model (14 km), which generally reproduced the observed aerosol distributions. In this paper, we introduce the following application studies using the NICAM-Chem model: future scenario experiments, downscaling using results obtained by a coupled atmosphere-ocean model, estimation of human health due to PM2.5, simulations of radioactive matter using a regional model, and aerosol assimilation by a localized ensemble transform Kalman filter.

Keywords

Air pollution Modeling Non-hydrostatic icosahedral atmospheric model Multi-scale 

Notes

Acknowledgements

We would like to express our gratitude to the MOEJ/S-12 members, especially Drs. T. Takemura, K. Sudo, Hanaoka, K. Ueda, and A. Takami. We also acknowledge A. Miyaji and R. Murata for their help of the simulation. We also thank the model developers: NICAM (http://nicam.jp/), SPRINTARS (http://sprintars.riam.kyusyu-u.ac.jp/indexe.html), and CHASER (http://chaser.has.env.nagoya-u.ac.jp/index.html), and the measurement: MODIS (http://modis.gsfc.nasa.gov/), AERONET (http://aeronet.gsfc.nasa.gov/), AEROS (http://soramame.taiki.go.jp/), and NCEP (http://rda.ucar.edu/datasets/ds083.2/). Some of the authors were supported by MOEJ/S-12 (Grant Number 14426634), the SALSA project in RECCA/MEXT (Grant Number 10101026), a Grant-in-Aid for Young Scientists B (Grant Number 26740010), a Grant-in-Aid for Young Scientists A (Grant Number 17H04711) a Grant-in-Aid for Scientific Research on Innovative Areas (Grant Number 24110002), MOE/GOSAT, JST/CREST/EMS/TEEDDA (Grant Number 12101625), JAXA/EarthCARE, GCOM-C, and MEXT/VL for climate diagnostics. The model simulations were performed using the K computer at RIKEN in Japan (general use proposal numbers 140046, 150156, 160004, and 170017), the supercomputer HITACHI SR16000 System (yayoi) and PRIMEHPC FX10 at the Information Technology Centre, University of Tokyo, Japan, and the NEC SX-9/A(ECO) at the National Institute for Environmental Studies, Japan.

References

  1. Amann M, Bertok I, Borken-Kleefeld J et al (2011) Cost-effective control of air quality and greenhouse gases in Europe: modeling and policy applications. Environ Model Softw 26:1489–1501.  https://doi.org/10.1016/j.envsoft.2011.07.012 CrossRefGoogle Scholar
  2. Arakawa A, Schubert WH (1974) Interaction of cumulus cloud ensemble with the large-scale environment, Part I. J Atmos Sci 31:674–701.  https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2 CrossRefGoogle Scholar
  3. Ariga T, Matsuhashi K (2012) Development of formulation method for centralized and decentralized scenarios on regional population distribution: using mesh-based national population census. Papers on City Planning 47:745-750 (in Japanese)Google Scholar
  4. Badarinath KVS, Kharol SK, Latha KM, Chand TR, Prasad VK, Jyothsna AN, Samatha K (2007) Multiyear ground-based and satellite observations of aerosol properties over a tropical urban area in India. Atmos Sci Lett 8(1):7–13CrossRefGoogle Scholar
  5. Badarinath KVS, Kharol SK, Krishna Prasad V, Kaskaoutis DG, Kambezidis HD (2008) Variation in aerosol properties over Hyderabad, India during intense cyclonic conditions. Int J Remote Sens 29(15):4575–4597CrossRefGoogle Scholar
  6. Badarinath KVS, Sharma AR, Kharol SK, Prasad VK (2009) Variations in CO, O3 and black carbon aerosol mass concentrations associated with planetary boundary layer (PBL) over tropical urban environment in India. J Atmos Chem 62(1):73–86CrossRefGoogle Scholar
  7. Balzarini A, Pirovano G, Honzak L et al (2015) WRF-Chem model sensitivity to chemical mechanisms choice in reconstructing aerosol optical properties. Atmos Environ 115:604–619.  https://doi.org/10.1016/j.atmosenv.2014.12.033 CrossRefGoogle Scholar
  8. Boucher O, Randall D, Artaxo P et al (2013) Clouds and aerosols. In: Stocker TF, Qin S, Plattner GK et al (eds) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge, pp 7SM1–7SM4Google Scholar
  9. Carmichael G, Sakurai T, Streets D et al (2008) MICS-Asia II: The model intercomparison study for Asia phase II methodology and overview of findings. Atmos Environ 42:3468–3490.  https://doi.org/10.1016/j.atmosenv.2007.04.007 CrossRefGoogle Scholar
  10. Cofala J, Amann M, Klimont Z, Kupiainen K, Höglund-Isaksson L (2007) Scenarios of global anthropogenic emissions of air pollutants and methane until 2030. Atmos Environ 41:8486–8499.  https://doi.org/10.1016/j.atmosenv.2007.07.010 CrossRefGoogle Scholar
  11. Cohen AJ, Anderson. HR, Ostro. B et al (2004) Urban air pollution. In: Ezzati M, Lopez AD, Rodgers A, Murray CJL (eds) Comparative quantification of health risks. Global and regional burden of disease attributable to selected major risk factors. World Health Organization, Geneva, pp 1353–1434Google Scholar
  12. Collins WD, Rasch PJ, Eaton BE et al (2001) Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: methodology for INDOEX. J Geophys Res 106:7313–7336.  https://doi.org/10.1029/2000JD900507 CrossRefGoogle Scholar
  13. Dai T, Goto D, Schutgens NAJ et al (2014a) Simulated aerosol key optical properties over global scale using an aerosol transport model coupled with a new type of dynamic core. Atmos Environ 82:71–82.  https://doi.org/10.1016/j.atmosenv.2013.10.018 CrossRefGoogle Scholar
  14. Dai T, Schutgens NAJ, Goto D, Shi G, Nakajima T (2014b) Improvement of aerosol optical properties modeling over eastern Asia with MODIS AOD assimilation in a global non-hydrostatic icosahedral aerosol transport model. Environ Pollut 195:319–329.  https://doi.org/10.1016/j.envpol.2014.06.021 CrossRefGoogle Scholar
  15. Dentener F, Kinne S, Bond T et al (2006) Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for Aerocom. Atmos Chem Phys 6:4321–4344.  https://doi.org/10.5194/acp-6-4321-2006 CrossRefGoogle Scholar
  16. Diehl T, Heil A, Chin M et al (2012) Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments. Atmos Chem Phys Discuss 12:24895–24954.  https://doi.org/10.5194/acpd-12-24895-2012 CrossRefGoogle Scholar
  17. Dubovik O, King MD (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J Geophys Res 105:20673–20696.  https://doi.org/10.1029/2000JD900282 CrossRefGoogle Scholar
  18. EC-JRC (European Commission, Joint Research Centre) (2009) Emission Database for Global Atmospheric Research (EDGAR), release version 4.0. http://edgar.jrc.ec.europa.eu. Accessed 6 Jan 2016
  19. Emori. S, Nozawa. T, Numaguti. A, Uno I (2001) Importance of cumulus parameterization for precipitation simulation over East Asia in June. J Meteor Soc Jpn 79:939–947.  https://doi.org/10.2151/jmsj.79.939 CrossRefGoogle Scholar
  20. Forster P, Ramaswamy V, Artaxo P et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, p 2007Google Scholar
  21. Goto D, Ueda K, Ng CFS, Takami A, Ariga T, Matsuhashi K, Nakajima T (2016) Estimation of excess mortality due to long-term exposure to PM2.5 in Japan using a high-resolution model for present and future scenarios, Atmos Environ 140:320-332. https://doi:10.1016/j.atmosenv.2016.06.015Google Scholar
  22. Goto D (2014) Modeling of black carbon in Asia using a global-to-regional seamless aerosol-transport model. Environ Pollut 195:330–335.  https://doi.org/10.1016/j.envpol.2014.06.006 CrossRefGoogle Scholar
  23. Goto D, Takemura T, Nakajima T (2008) Importance of global aerosol modeling including secondary organic aerosol formed from monoterpene. J Geophys Res 113:D07205.  https://doi.org/10.1029/2007JD009019 CrossRefGoogle Scholar
  24. Goto D, Nakajima T, Takemura T, Sudo K (2011a) A study of uncertainties in the sulfate distribution and its radiative forcing associated with sulfur chemistry in a global aerosol model. Atmos Chem Phys 11:10889–10910.  https://doi.org/10.5194/acp-11-10889-2011 CrossRefGoogle Scholar
  25. Goto D, Takemura T, Nakajima T, Badarinath KVS (2011b) Global aerosol model-derived black carbon concentration and single scattering albedo over Indian region and its comparison with ground observations. Atmos Environ 45:3277–3285.  https://doi.org/10.1016/j.atmosenv.2011.03.037 CrossRefGoogle Scholar
  26. Goto D, Badarinath KVS, Takemura T, Nakajima T (2011c) Simulation of aerosol optical properties over a tropical urban site in India using a global model and its comparison with ground measurements. Ann Geophys 29:955–963.  https://doi.org/10.5194/angeo-29-955-2011 CrossRefGoogle Scholar
  27. Goto D, Schutgens NAJ, Nakajima T, Takemura T (2011d) Sensitivity of aerosol to assumed optical properties over Asia using a global aerosol model and AERONET. Geophys Res Lett 38.  https://doi.org/10.1029/2011GL048675
  28. Goto D, Kanazawa S, Nakajima T, Takemura T (2012a) Evaluation of a relationship between aerosols and surface downward shortwave flux through an integrative analysis of modeling and observation. Atmos Environ 49:294–301.  https://doi.org/10.1016/j.atmosenv.2011.11.032 CrossRefGoogle Scholar
  29. Goto D, Oshima N, Nakajima T, Takemura T, Ohara T (2012b) Impact of the aging process of black carbon aerosols on their spatial distribution, hygroscopicity, and radiative forcing in a global climate model. Atmos Chem Phys Discuss 12:29801–29849.  https://doi.org/10.5194/acpd-12-29801-2012 CrossRefGoogle Scholar
  30. Goto D, Dai T, Satoh M et al (2015a) Application of a global nonhydrostatic model with a stretched-grid system to regional aerosol simulations around Japan. Geosci Model Dev 8:235–259.  https://doi.org/10.5194/gmd-8-235-2015 CrossRefGoogle Scholar
  31. Goto D, Nakajima T, Dai T et al (2015b) An evaluation of simulated particulate sulfate over East Asia through global model intercomparison. J Geophys Res Atmos 120:6247–6270.  https://doi.org/10.1002/2014JD021693 CrossRefGoogle Scholar
  32. Granier C, Bessagnet B, Bond T et al (2011) Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Clim Change 109:163–190.  https://doi.org/10.1007/s10584-011-0154-1 CrossRefGoogle Scholar
  33. Guenther A, Hewitt CN, Erickson D et al (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892.  https://doi.org/10.1029/94JD02950 CrossRefGoogle Scholar
  34. Hanaoka T, Akashi O, Fujiwara K, Motoki Y, Hibino G (2014) Potential for reducing Air-pollutants while achieving 2°C global temperature change limit target. Environ Pollut 195:336–343.  https://doi.org/10.1016/j.envpol.2014.06.022 CrossRefGoogle Scholar
  35. Hayasaka H, Noguchi I, Putra EI, Yulianti N, Vadrevu K (2014) Peat-fire-related air pollution in Central Kalimantan, Indonesia. Environ Pollut 195:257–266CrossRefGoogle Scholar
  36. Hobbs PV, Reid JS, Kotchenruther RA et al (1997) Direct radiative forcing by smoke from biomass burning. Science 275:1776–1778CrossRefGoogle Scholar
  37. Holben BN, Eck TF, Slutsker I et al (1998) AERONET - a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16.  https://doi.org/10.1016/S0034-4257(98)00031-5 CrossRefGoogle Scholar
  38. Hunt BR, Kostelich EJ, Szunyogh I (2007) Efficient data assimilation for spatio-temporal chaos: a local ensemble transform Kalman filter. Phys D 30:112–126.  https://doi.org/10.1016/j.physd.2006.11.008 CrossRefGoogle Scholar
  39. Im U, Bianconi R, Solazzo E et al (2015) Evaluation of operational online-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part II: Particulate matter. Atmos Environ 115:421–441.  https://doi.org/10.1016/j.atmosenv.2014.08.072 CrossRefGoogle Scholar
  40. Jacobson MZ (2001) GATOR-GCMM: a global through urban scale air pollution and weather forecast model. 1. Model design and treatment of sub-grid soil, vegetation, roads, rooftops, water, sea ice, and snow. J Geophys Res 106:5385–5402CrossRefGoogle Scholar
  41. Janssens-Maenhout G, Crippa M, Guizzardi D et al (2015) HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos Chem Phys 15:11411–11432.  https://doi.org/10.5194/acp-15-11411-2015 CrossRefGoogle Scholar
  42. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-Year Reanalysis Project. B Am Meteorol Soc 77:437–471.  https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  43. Kannari A, Tonooka Y, Baba T, Murano K (2007) Development of multiple-species 1 km x 1 km resolution hourly basis emissions inventory for Japan. Atmos Environ 41:3428–3439.  https://doi.org/10.1016/j.atmosenv.2006.12.015 CrossRefGoogle Scholar
  44. Katata G, Chino M, Kobayashi T et al (2015) Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model. Atmos Chem Phys 15:1029–1070.  https://doi.org/10.5194/acp-15-1029-2015 CrossRefGoogle Scholar
  45. Kinne S, Schulz M, Textor C et al (2006) An Aerocom initial assessment – optical properties in aerosol component modules of global models. Atmos Chem Phys 6:1815–1834.  https://doi.org/10.5194/acp-6-1815-2006 CrossRefGoogle Scholar
  46. Klimont Z, Cofala J, Xing J et al (2009) Projections of SO2, NOx, and carbonaceous aerosols emissions in Asia. Tellus Ser B 61B:602–617CrossRefGoogle Scholar
  47. Klimont Z, Smith SJ, Cofala J (2013) The last decade of global anthropogenic sulfur dioxide: 2000-2011 emissions. Enrivon Res Lett 8:014003.  https://doi.org/10.1088/1748-9326/8/1/014003 CrossRefGoogle Scholar
  48. Koch D, Schulz M, Kinne S et al (2009) Evaluation of black carbon estimations in global aerosol models. Atmos Chem Phys 9:9001–9026CrossRefGoogle Scholar
  49. Kodama C, Yamada Y, Noda AT et al (2015) A 20-year climatology of a NICAM AMIP-type simulation. J Meteoro Soc Japan Set II 93(4):393–424CrossRefGoogle Scholar
  50. Krewski D, Jerrett M, Burnett RT et al (2009) Extended follow-up and spatial analysis of the American Cancer Society Study linking particulate air pollution and mortality. Health Effects Institute, Boston, MAGoogle Scholar
  51. Kurokawa J, Ohara T, Morikawa S et al (2013) Emissions of air pollutants and greenhouse gases over Asian regions during 2000-2008: Regional Emission inventory in ASia (REAS) version 2. Atmos Chem Phys 13:11019–11058.  https://doi.org/10.5194/acp-13-11019-2013 CrossRefGoogle Scholar
  52. Le Trent H, Li Z (1991) Sensitivity of an atmospheric general circulation model to prescribed SST changes: feedback effects associated with the simulation of cloud optical properties. Climate Dynam 5:175–187.  https://doi.org/10.1007/BF00251808
  53. Le TH, Nguyen TNT, Lasko K, Ilavajhala S, Vadrevu KP, Justice C (2014) Vegetation fires and air pollution in Vietnam. Environ Pollut 195:267–275CrossRefGoogle Scholar
  54. Lee YH, Lamarque J, Flanner MG et al (2013) Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos Chem Phys 13:2607–2634.  https://doi.org/10.5194/acp-13-2607-2013 CrossRefGoogle Scholar
  55. Lei Y, Zhang Q, Nielsen C, He K (2011) An inventory of primary air pollutants and CO2 emissions from cement production in China, 1990–2020. Atmos Environ 45:147–154.  https://doi.org/10.1016/j.atmosenv.2010.09.034 CrossRefGoogle Scholar
  56. van Leer B (1977) Toward the ultimate conservative difference scheme, part IV, A new approach to numerical convection. J Comput Phys 23:276– 299. https://doi:10.1016/0021-9991(77)90095-XGoogle Scholar
  57. Lelieveld J, Barlas C, Giannadaki D, Pozzer A (2013) Model calculated global, regional and megacity premature mortality due to air pollution. Atmos Chem Phys 13:7023–7037.  https://doi.org/10.5194/acp-13-7023-2013 CrossRefGoogle Scholar
  58. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525:367–371.  https://doi.org/10.1038/nature15371 CrossRefGoogle Scholar
  59. Li JF, Waliser D, Woods C et al (2008) Comparisons of satellites liquid water estimates to ECMWF and GMAO analyses, 20th century IPCC AR4 climate simulations, and GCM simulations. Geophys Res Lett 35:L19710.  https://doi.org/10.1029/2008GL035427 CrossRefGoogle Scholar
  60. Lim SS, Vos T, Flaxman AD et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2224–2260.  https://doi.org/10.1016/S0140-6736(12)61766-8 CrossRefGoogle Scholar
  61. Lu Z, Streets DG, Zhang Q et al (2010) Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000. Atmos Chem Phys 10:6311–6331.  https://doi.org/10.5194/acp-1-06311-2010 CrossRefGoogle Scholar
  62. Makar PA, Gong W, Hogrefe C et al (2015) Feedbacks between air pollution and weather, part 2: effects on chemistry. Atmos Environ 115:499–526.  https://doi.org/10.1016/j.atmosenv.2014.10.021 CrossRefGoogle Scholar
  63. Mellor GL, Yamada T (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31:1791–1806.  https://doi.org/10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2 CrossRefGoogle Scholar
  64. Miura H (2007) An upwind-biases conservative advection scheme for spherical hexagonal-pentagonal grids. Mon Weather Rev 135:4038–4044.  https://doi.org/10.1175/2007MWR2101.1 CrossRefGoogle Scholar
  65. Miura H, Satoh M, Nasuno T, Noda AT, Oouchi K (2007) A madden-Julian oscillation event realistically simulated by a global cloud-resolving model. Science 318:1763–1765.  https://doi.org/10.1126/science.1148443 CrossRefGoogle Scholar
  66. Miyamoto Y, Kajikawa Y, Yoshida R et al (2013) Deep moist atmospheric convection in a subkilometer global simulation. Geophys Res Lett 40:4922–4926.  https://doi.org/10.1002/grl.50944 CrossRefGoogle Scholar
  67. Miyoshi T, Yamane S (2007) Local ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution. Mon Weather Rev 135:3841–3861.  https://doi.org/10.1175/2007MWR1873.1 CrossRefGoogle Scholar
  68. Monahan EC, Spiel DE, Davidson KL (1986) A model of marine aerosol generation via whitecaps and wave disruption in oceanic whitecaps. In: Monahan EC, Niocaill GM (eds) Oceanic whitecaps and their role in air-sea exchange processes. D. Reidel, Norwell, MA, pp 167–174Google Scholar
  69. Morino Y, Chatani S, Hayami H et al (2010) Evaluation of ensemble approach for O3 and PM2.5 simulation. Asian J Atmos Environ 4:150–156.  https://doi.org/10.5572/ajae.2010.4.3.150 CrossRefGoogle Scholar
  70. Myhre G, Berglen TF, Johnsrud M et al (2009) Modelled radiative forcing of the firect aerosol effect with multi-observation evaluation. Atmos Chem Phys 9:1365–1392CrossRefGoogle Scholar
  71. Myhre G, Samset BH, Schulz M et al (2013a) Radiative forcing of the direct aerosol effect from Aerocom phase II simulations. Atmos Chem Phys 13:1853–1877.  https://doi.org/10.5194/acp-13-1853-2013 CrossRefGoogle Scholar
  72. Myhre G, Shindell D, Bréon FM et al (2013b) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin S, Plattner GK et al (eds) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge, pp 659–740Google Scholar
  73. Nagashima T, Ohara T, Sudo K, Akimoto H (2010) The relative importance of various source regions on East Asian surface ozone. Atmos Chem Phys 10:11305–11322.  https://doi.org/10.5194/acp-10-11305-2010 CrossRefGoogle Scholar
  74. Nakajima T, Tonna G, Rao R, Boi P, Kaufman Y, Holben B (1996) Use of sky brightness measurements from ground for remote sensing of particulate polydispersions. Appl Optics 35:2672–2686CrossRefGoogle Scholar
  75. Nakajima T, Takenaka H, Goto D et al (2013) Measurements and modeling of the solar radiation budget. Simulation 32:199–207Google Scholar
  76. Nakajima T, Imasu R, Takami A et al (2015) Development of seamless chemical assimilation system and its application for atmospheric environmental materials. Simulation 34:104–114 (Japanese)Google Scholar
  77. Nakajima T, Misawa S, Morino Y, Tsuruta H, Goto D, Uchida J, Takemura T, Ohara T, Oura Y, Ebihara M, Satoh M (2017) Model depiction of the atmospheric flows of radioactive cesium emitted from the Fukushima Daiichi Nuclear Power Station accident. Progress in Earth and Planetary Science 4:2. https://doi:10.1186/s40645-017-0117-xGoogle Scholar
  78. Nakanishi M, Niino H (2004) An improved Mellor–Yamada Level-3 model with condensation physics: its design and verification. Bound-Lay Meteorol 112:1–31.  https://doi.org/10.1023/B:BOUN.0000020164.04146.98 CrossRefGoogle Scholar
  79. Nakanishi M, Niino H (2009) Development of an improved turbulence closure model for the atmospheric boundary layer. J Meteorol Soc Jpn 87:895–912.  https://doi.org/10.2151/jmsj.87.895 CrossRefGoogle Scholar
  80. Nasuno T (2013) Forecast skill of madden-Julian oscillation events in a global nonhydrostatic model during the CINDY2011/DYNAMO observation period. SOLA 9:69–73.  https://doi.org/10.2151/sola.2013-016 CrossRefGoogle Scholar
  81. Niwa Y, Tomita H, Satoh M, Imasu R (2011) A three-dimensional icosahedral grid advection scheme preserving monotonicity and consistency with continuity for atmospheric tracer transport. J Meteor Soc Jpn 89:255–268.  https://doi.org/10.2151/jmsj.2011-306 CrossRefGoogle Scholar
  82. O’Neill BC, Kriegler E, Riahi K et al (2014) A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim Change 122:387–400.  https://doi.org/10.1007/s10584-013-0905-2 CrossRefGoogle Scholar
  83. Ohara T, Akimoto H, Kurokawa J et al (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980-2020. Atmos Chem Phys 7:4419–4444.  https://doi.org/10.5194/acp-7-4419-2007 CrossRefGoogle Scholar
  84. Olivier JGJ, Bouwman AF, van der Maas CWM et al (1996) Description of EDGAR Version 2.0 A set of global emission inventories of greenhouse gases and ozone-depleting substances for all anthropogenic and most natural sources on a per country basis and on 1 degree x 1 degree grid. Available via RIVM Repository. http://hdl.handle.net/10029/10497. Access 6 Jan 2016
  85. Olivier JGJ, Van Aardenne JA, Dentener F, Ganzeveld L, Peters JAHW (2005) Recent trends in global greenhouse gas emissions: regional trends and spatial distribution of key sources non-CO2 greenhouse gases (NCGG-4). In: Van Amstel A (ed) Non-CO2 greenhouse gases: science, control, policy and implementation. Millpress, Rotterdam, pp 325–330Google Scholar
  86. Pan X, Chin M, Gautam R et al (2015) A multi-model evaluation of aerosols over South Asia: common problems and possible causes. Atmos Chem Phys 15:5903–5928.  https://doi.org/10.5194/acp-15-5903-2015 CrossRefGoogle Scholar
  87. Prasad VK, Kant Y, Gupta PK, Elvidge C, Badarinath KVS (2002) Biomass burning and related trace gas emissions from tropical dry deciduous forests of India: A study using DMSP-OLS data and ground-based measurements. Int J Remote Sens 23(14):2837–2851CrossRefGoogle Scholar
  88. Prasad VK, Badarinath KVS, Eaturu A (2008) Effects of precipitation, temperature and topographic parameters on evergreen vegetation greenery in the Western Ghats, India. Int J Climatol 28(13):1807–1819CrossRefGoogle Scholar
  89. Randerson JT, van der Werf GR, Giglio L, Collatz GJ, Kasibhatla PS (2013) Global Fire Emissions Database, Version 3 (GFEDv3.1). Data set. ORNL DAAC, Oak Ridge, TN. doi:  https://doi.org/10.3334/ORNLDAAC/1191
  90. Remer LA, Kleidman RG, Levy RC et al (2008) Global aerosol climatology from the MODIS satellite sensors. J Geophys Res Atmos 113.  https://doi.org/10.1029/2007JD009661
  91. Sato T, Miura H, Satoh M, Takayabu YN, Wang Y (2009) Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J Climate 22:4809–4826.  https://doi.org/10.1175/2009JCLI2890.1 CrossRefGoogle Scholar
  92. Sato Y, Miura H, Yashiro H, Goto D, Takemura T, Tomita H, Nakajima T (2016) Unrealistically pristine air in the Arctic produced by current global scale models. Scientific Reports 6:26561. https://doi:10.1038/resp26561Google Scholar
  93. Satoh M, Matsuno T, Tomita H et al (2008) Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J Comput Phys 227:3486–3514.  https://doi.org/10.1016/j.jcp.2007.02.006 CrossRefGoogle Scholar
  94. Satoh M, Tomita H, Yashiro H et al (2014) The non-hydrostatic icosahedral atmospheric model: description and development. Prog Earth Planet Sci 1:18–49.  https://doi.org/10.1186/s40645-014-0018-1 CrossRefGoogle Scholar
  95. Schutgens NAJ, Miyoshi T, Takemura T, Nakajima T (2010a) Applying an ensemble Kalman filter to the assimilation of AERONET observations in a global aerosol transport model. Atmos Chem Phys 10:2561–2576.  https://doi.org/10.5194/acp-10-2561-2010 CrossRefGoogle Scholar
  96. Schutgens NAJ, Miyoshi T, Takemura T, Nakajima T (2010b) Sensitivity tests for an ensemble Kalman filter for aerosol assimilation. Atmos Chem Phys 10:6583–6600.  https://doi.org/10.5194/acp-10-6583-2010 CrossRefGoogle Scholar
  97. Schutgens N, Nakata M, Nakajima T (2012) Estimating aerosol emissions by assimilating remote sensing observations into a global transport model. Remote Sens (Basel) 4:3528–3543.  https://doi.org/10.3390/rs4113528 CrossRefGoogle Scholar
  98. Science Council of Japan (SCJ) (2014) A review of the model comparison of transportation and deposition of radioactive materials released to the environment as a result of the Tokyo Electric Power Company’s Fukushima Daiichi nuclear power plant accident, Sectional Committee on Nuclear Accident. Report of Committee on Comprehensive Synthetic EngineeringGoogle Scholar
  99. Sekiguchi M, Nakajima T (2008) A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model. J Quant Spectrosc Radiat Transf 109:2779–2793.  https://doi.org/10.1016/j.jqsrt.2008.07.013 CrossRefGoogle Scholar
  100. Sekiyama TT, Tanaka TY, Shimizu A, Miyoshi T (2010) Data assimilation of CALIPSO aerosol observations. Atmos Chem Phys 10:39–49.  https://doi.org/10.5194/acp-10-39-2010 CrossRefGoogle Scholar
  101. Shindell DT, Chin M, Dentener F et al (2008) A multi-model assessment of pollution transport to the Arctic. Atmos Chem Phys 8:5353–5372.  https://doi.org/10.5194/acp-8-5353-2008 CrossRefGoogle Scholar
  102. Silva RA, West JJ, Zhang Y et al (2013) Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environ Res Lett 8:034005.  https://doi.org/10.1088/1748-9326/8/3/034005 CrossRefGoogle Scholar
  103. Smith SJ, van Aardenne J, Klimont Z et al (2011) Anthropogenic sulfur dioxide emissions: 1850-2005. Atmos Chem Phys 11:1101–1116.  https://doi.org/10.5194/acp-11-1101-2011 CrossRefGoogle Scholar
  104. Spracklen DV, Pringle KJ, Carslaw KS, Chipperfield MP, Mann GW (2005) A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties. Atmos Chem Phys 5:2227–2252.  https://doi.org/10.5194/acp-5-2227-2005 CrossRefGoogle Scholar
  105. Stern DI (2006) Reversal of the trend in global anthropogenic sulfur emissions. Glob Environ Change 16:207–220.  https://doi.org/10.1016/j.gloenvcha.2006.01.001 CrossRefGoogle Scholar
  106. Stevenson DS, Young PJ, Naik V et al (2013) Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos Chem Phys 13:3063–3085.  https://doi.org/10.5184/acp-13-3063-2013 CrossRefGoogle Scholar
  107. Streets DG, Bond TC, Carmichael GR et al (2003) An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J Geophys Res 108:D21.  https://doi.org/10.1029/2002JD003093 CrossRefGoogle Scholar
  108. Sudo K, Akimoto H (2007) Global source attribution of tropospheric ozone: long-range transport from various source regions. J Geophys Res 112:D12302.  https://doi.org/10.1029/2006JD007992 CrossRefGoogle Scholar
  109. Sudo K, Takahashi M, Kurokawa J, Akimoto H (2002a) CHASER: A global chemical model of the troposphere 1. Model description. J Geophys Res 107:4339.  https://doi.org/10.1029/2001JD001113 Google Scholar
  110. Sudo K, Takahashi M, Akimoto H (2002b) CHASER: a global chemical model of the troposphere 2. Model results and evaluation. J Geophys Res 107:4586.  https://doi.org/10.1029/2001JD001114 Google Scholar
  111. Suzuki K, Nakajima T, Satoh M et al (2008) Global cloud-system-resolving simulation of aerosol effect on warm clouds. Geophys Res Lett 35:L19817.  https://doi.org/10.1029/2008GL035449 CrossRefGoogle Scholar
  112. Takata K, Emori S, Watanabe T (2003) Development of the minimal advanced treatments of surface interaction and runoff. Global Planet Change 38:209–222.  https://doi.org/10.1016/S0921-8181(03)00030-4 CrossRefGoogle Scholar
  113. Takemura T, Okamoto H, Maruyama Y et al (2000) Global three-dimensional simulation of aerosol optical thickness distribution of various origins. J Geophys Res 105:17853–17873.  https://doi.org/10.1029/2000JD900265 CrossRefGoogle Scholar
  114. Takemura T, Nakajima T, Dubovik O, Holben BN, Kinne S (2002) Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. J Climate 15:333–352.  https://doi.org/10.1175/1520-0442(2002)015<0333:SSAARF>2.0.CO;2 CrossRefGoogle Scholar
  115. Takemura T, Nozawa T, Emori S, Nakajima TY, Nakajima T (2005) Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J Geophys Res 110:D02202.  https://doi.org/10.1029/2004JD005029 Google Scholar
  116. Takemura T, Egashira M, Matsuzawa K et al (2009) A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum. Atmos Chem Phys 9:3061–3073.  https://doi.org/10.5194/acp-9-3061-2009 CrossRefGoogle Scholar
  117. Textor C, Schulz M, Guibert S et al (2006) Analysis and quantification of the diversities of aerosol life cycles within Aerocom. Atmos Chem Phys 6:1777–1813.  https://doi.org/10.5194/acp-6-1777-2006 CrossRefGoogle Scholar
  118. Tomita H (2008a) A stretched grid on a sphere by new grid transformation. J Meteorol Soc Jpn 86A:107–119CrossRefGoogle Scholar
  119. Tomita H (2008b) New microphysics with five and six categories with diagnostic generation of cloud ice. J Meteorol Soc Jpn 86A:121–142CrossRefGoogle Scholar
  120. Tomita H, Satoh M (2004) A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn Res 34:357–400.  https://doi.org/10.1016/j.fluiddyn.2004.03.003 CrossRefGoogle Scholar
  121. Tomita H, Miura H, Iga S, Nasuno T, Satoh M (2005) A global cloud-resolving simulation: preliminary results from an aqua planet experiment. Geophys Res Lett 32:L08805.  https://doi.org/10.1029/2005GL022459 Google Scholar
  122. Trieu TTN, Goto D, Yashiro H, Murata R, Sudo K, Tomita H, Satoh M, Nakajima T (2017) Evaluation of summertime surface ozone in Kanto area of Japan using a semi-regional model and observation, Atmos Environ 153:163–181, https://doi:10.1016/j.atmosenv.2017.03.030Google Scholar
  123. Tsuruta H, Oura Y, Ebihara M, Ohara T, Nakajima T (2014) First retrieval of hourly atmospheric radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution monitoring stations. Sci Rep 4:6717.  https://doi.org/10.1038/srep06717 CrossRefGoogle Scholar
  124. Turpin B, Lim H-J (2001) Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Tech 35:602–610.  https://doi.org/10.1080/02786820119445 CrossRefGoogle Scholar
  125. Uchida J, Mori M, Nakamura H et al (2016) Error and energy budget analysis of a non-hydrostatic stretched-grid global atmospheric model. Mon Wea Rev. (in revision)Google Scholar
  126. Vadrevu KP, Giglio L, Justice C (2013) Satellite based analysis of fire–carbon monoxide relationships from forest and agricultural residue burning (2003–2011). Atmos Environ 64:179–191CrossRefGoogle Scholar
  127. Vadrevu KP, Lasko K, Giglio L, Justice C (2015) Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia. Environ Res Lett 10(10):105003CrossRefGoogle Scholar
  128. van Donkelaar A, Martin RV, Brauer M et al (2010) Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environ Health Perspect 118:847–855.  https://doi.org/10.1289/ehp.0901623
  129. van Noije TPC, Eskes HJ, Dentener FJ et al (2006) Multi-model ensemble simulations of tropospheric NO2 compared with GOME retrievals for the year 2000. Atmos Chem Phys 6:2943–2979.  https://doi.org/10.5194/acp-6-2943-2006 CrossRefGoogle Scholar
  130. van Vuuren DP, Edmonds J, Kainuma M et al (2011) The representative concentration pathways: an overview. Clim Change 109:5–31.  https://doi.org/10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  131. Vay SA, Choi Y, Vadrevu KP, Blake DR, Tyler SC, Wisthaler A, Hecobian A, Kondo Y, Diskin GS, Sachse GW, Woo JH (2011) Patterns of CO2 and radiocarbon across high northern latitudes during International Polar Year 2008. J Geophys Res Atmos 116:D14CrossRefGoogle Scholar
  132. Wang M, Ghan S, Ovchinnikov M et al (2011) Aerosol indirect effects in a multi-scale aerosol-climate model PNNL-MMF. Atmos Chem Phys 11:5431–5455.  https://doi.org/10.5194/acp-11-5431-2011 CrossRefGoogle Scholar
  133. Watanabe M, Suzuki T, O’ishi R et al (2010) Improved climate simulation by Miroc 5: mean states, variability, and climate sensitivity. J Climate 23:6312–6335.  https://doi.org/10.1175/2010JCLI3679.1 CrossRefGoogle Scholar
  134. Watanabe S, Hajima T, Sudo K et al (2011) Miroc-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev 4:845–872.  https://doi.org/10.5194/gmd-4-845-2011 CrossRefGoogle Scholar
  135. World Health Organization (2002) The world health report 2002: reducing risk, promoting health life. Available via World Health Organization. http://www.who.int/whr/2002/en/. Access 6 Jan 2016
  136. Yonemoto, R. 2015. A numerical study of the source of anthropogenic aerosols emission by using ground observation assimilated into NICAM-SPRINTARS. Thesis, Graduate School of Frontier Science. University of Tokyo (Japanese)Google Scholar
  137. Yumimoto K, Uno I, Sugimoto N et al (2008) Adjoint inversion modeling of Asian dust emission using lidar observations. Atmos Chem Phys 8:2869–2884.  https://doi.org/10.5194/acp-8-2869-2008 CrossRefGoogle Scholar
  138. Zhang Q, Streets DG, Carmichael GR et al (2009) Asian emissions in 2006 for the NASA INTEX-B mission. Atmos Chem Phys 9:5131–5153.  https://doi.org/10.5194/acp-9-5131-2009 CrossRefGoogle Scholar
  139. Zhao Y, Nielsen CP, McElroy MB, Zhang L, Zhang J (2012a) CO emissions in China: uncertainties and implications of improved energy efficiency and emission control. Atmos Environ 49:103–113.  https://doi.org/10.1016/j.atmosenv.2011.12.015 CrossRefGoogle Scholar
  140. Zhao Y, Nielsen CP, McElroy MB (2012b) China’s CO2 emissions estimated from the bottom up: recent trends, spatial distributions, and quantification of uncertainties. Atmos Environ 59:214–223.  https://doi.org/10.1016/j.atmosenv.2012.05.027 CrossRefGoogle Scholar
  141. Zhao Y, Zhang J, Nielsen CP (2013) The effects of recent control policies on trends in emissions of anthropogenic atmospheric pollutants and CO2 in China. Atmos Chem Phys 13:487–508.  https://doi.org/10.5194/acp-13-487-2013 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Daisuke Goto
    • 1
  • Teruyuki Nakajima
    • 2
  • Dai Tie
    • 3
  • Hisashi Yashiro
    • 4
  • Yousuke Sato
    • 4
    • 6
  • Kentaroh Suzuki
    • 5
  • Junya Uchida
    • 5
  • Shota Misawa
    • 5
  • Ryoma Yonemoto
    • 5
  • Tran Thi Ngoc Trieu
    • 2
  • Hirofumi Tomita
    • 4
  • Masaki Satoh
    • 5
  1. 1.National Institute for Environmental Studies, JapanTsukubaJapan
  2. 2.Earth Observation Research CenterJapan Aerospace Exploration AgencyTsukubaJapan
  3. 3.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  4. 4.RIKEN Advanced Institute for Computational ScienceKobeJapan
  5. 5.Atmosphere and Ocean Research InstituteUniversity of TokyoKashiwaJapan
  6. 6.Department of Applied Energy, Graduate School of EngineeringNagoya UniversityNagoyaJapan

Personalised recommendations