Learning-Based Estimation of Functional Correlation Tensors in White Matter for Early Diagnosis of Mild Cognitive Impairment

  • Lichi Zhang
  • Han Zhang
  • Xiaobo Chen
  • Qian Wang
  • Pew-Thian Yap
  • Dinggang ShenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10530)


It has been recently demonstrated that the local BOLD signals in resting-state fMRI (rs-fMRI) can be captured for the white matter (WM) by functional correlation tensors (FCTs). FCTs provide similar orientation information as diffusion tensors (DTs), and also functional information concerning brain dynamics. However, FCTs are susceptible to noise due to the low signal-to-noise ratio nature of WM BOLD signals. Here we introduce a robust FCT estimation method to facilitate individualized diagnosis. First, we develop a noise-tolerating patch-based approach to measure spatiotemporal correlations of local BOLD signals. Second, it is also enhanced by DTs predicted from the input rs-fMRI using a learning-based regression model. We evaluate our trained regressor using the high-resolution HCP dataset. The regressor is then applied to estimate the robust FCTs for subjects in the ADNI2 dataset. We demonstrate for the first time the disease diagnostic value of robust FCTs.


  1. 1.
    Gore, J.C.: Principles and practice of functional MRI of the human brain. J. Clin. Investig. 112, 4–9 (2003)CrossRefGoogle Scholar
  2. 2.
    Wise, R.G., Ide, K., Poulin, M.J., Tracey, I.: Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. Neuroimage 21, 1652–1664 (2004)CrossRefGoogle Scholar
  3. 3.
    Tettamanti, M., Paulesu, E., Scifo, P., Maravita, A., Fazio, F., Perani, D., Marzi, C.: Interhemispheric transmission of visuomotor information in humans: fMRI evidence. J. Neurophysiol. 88, 1051–1058 (2002)Google Scholar
  4. 4.
    Mosier, K.M., Liu, W.-C., Maldjian, J.A., Shah, R., Modi, B.: Lateralization of cortical function in swallowing: a functional MR imaging study. Am. J. Neuroradiol. 20, 1520–1526 (1999)Google Scholar
  5. 5.
    Ding, Z., Xu, R., Bailey, S.K., Wu, T.-L., Morgan, V.L., Cutting, L.E., Anderson, A.W., Gore, J.C.: Visualizing functional pathways in the human brain using correlation tensors and magnetic resonance imaging. Magn. Reson. Imaging 34, 8–17 (2016)CrossRefGoogle Scholar
  6. 6.
    Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44, 625–632 (2000)CrossRefGoogle Scholar
  7. 7.
    Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1744–1757 (2010)CrossRefGoogle Scholar
  8. 8.
    Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found Trends® Comput. Graph. Vis. 7, 81–227 (2012)CrossRefzbMATHGoogle Scholar
  9. 9.
    Zhang, L., Wang, Q., Gao, Y., Wu, G., Shen, D.: Automatic labeling of MR brain images by hierarchical learning of atlas forests. Med. Phys. 43, 1175–1186 (2016)CrossRefGoogle Scholar
  10. 10.
    Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., Ugurbil, K., Consortium, W.U.-M.H.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)CrossRefGoogle Scholar
  11. 11.
    Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, R.C., Jack, C., Jagust, W., Trojanowski, J.Q., Toga, A.W., Beckett, L.: The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. N. Am. 15, 869–877 (2005)CrossRefGoogle Scholar
  12. 12.
    Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. Neuroimage 62, 782–790 (2012)CrossRefGoogle Scholar
  13. 13.
    Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Ugurbil, K., Harel, N.: Reconstruction of the orientation distribution function in single-and multiple-shell q-ball imaging within constant solid angle. Magn. Reson. Med. 64, 554–566 (2010)Google Scholar
  14. 14.
    Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinform. 23, 2507–2517 (2007)CrossRefGoogle Scholar
  15. 15.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Lichi Zhang
    • 1
  • Han Zhang
    • 1
  • Xiaobo Chen
    • 1
  • Qian Wang
    • 2
  • Pew-Thian Yap
    • 1
  • Dinggang Shen
    • 1
    Email author
  1. 1.Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Med-X Research Institute, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations