Breast Tumor Detection in Ultrasound Images Using Deep Learning

  • Zhantao CaoEmail author
  • Lixin Duan
  • Guowu Yang
  • Ting Yue
  • Qin Chen
  • Huazhu Fu
  • Yanwu Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10530)


Detecting tumor regions in breast ultrasound images has always been an interesting topic. Due to the complex structure of breasts and the existence of noise in the ultrasound images, traditional handcraft feature based methods usually cannot achieve satisfactory results. With the recent advance of deep learning, the performance of object detection has been boosted to a great extent, especially for general object detection. In this paper, we aim to systematically evaluate the performance of several existing state-of-the-art object detection methods for breast tumor detection. To achieve that, we have collected a new dataset consisting of 579 benign and 464 malignant lesion cases with the corresponding ultrasound images manually annotated by experienced clinicians. Comprehensive experimental results clearly show that the recently proposed convolutional neural network based method, Single Shot MultiBox Detector (SSD), outperforms other methods in terms of both precision and recall.


Deep learning Breast tumor detection 



This work is supported by grants from the National Natural Science Foundation of China (61572109) and the Fundamental Research Funds for the Central Universities (ZYGX2016J164).


  1. 1.
    Cheng, H.D., Shan, J., Ju, W., Guo, Y.H., Zhang, L.: Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recogn. 43, 299–317 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Su, Y., Wang, Y.: Automatic detection of the region of interest from breast tumor ultrasound image. Chin. J. Biomed. Eng. 29(2), 178–184 (2010)Google Scholar
  3. 3.
    Shan, J., Cheng, H.D., Wang, X.Y.: Completely automated segmentation approach for breast ultrasound images using multiple-domain features. Ultrasound Med. Biol. 38(2), 262–275 (2012)CrossRefGoogle Scholar
  4. 4.
    Xian, M., Zhang, Y.T., Cheng, H.D.: Fully automatic segmentation of breast ultrasound images based on breast characteristics in space and frequency domains. Pattern Recogn. 48(2), 485–497 (2015)CrossRefGoogle Scholar
  5. 5.
    Liu, B., Cheng, H.D., Huang, J.H., Tian, J.W., Tang, X.L., Liu, J.F.: Fully automatic and segmentation-robust classification of breast tumors based on local texture analysis of ultrasound images. Pattern Recogn. 43(1), 280–298 (2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    Girshick, R.: Fast R-CNN. In: ICCV, pp. 1440–1448 (2015)Google Scholar
  7. 7.
    Ren, S.Q., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)Google Scholar
  8. 8.
    Redmon, J., Divvala, S.K., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR, pp. 779–788 (2015)Google Scholar
  9. 9.
    Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). doi: 10.1007/978-3-319-46448-0_2 CrossRefGoogle Scholar
  10. 10.
    Akselrod-Ballin, A., Karlinsky, L., Alpert, S., Hasoul, S., Ben-Ari, R., Barkan, E.: A region based convolutional network for tumor detection and classification in breast mammography. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 197–205. Springer, Cham (2016). doi: 10.1007/978-3-319-46976-8_21 Google Scholar
  11. 11.
    Viola, P., Jones, M.: Robust real-time face detection. In: IJCV (2004)Google Scholar
  12. 12.
    Sande, K., Uijlings, J., Gevers, T., Smeulders, A.: Segmentation as selective search for object recognition. In: ICCV (2011)Google Scholar
  13. 13.
    Alexe, B., Deselaers, T., Ferrari, V.: What is an object? In: CVPR (2010)Google Scholar
  14. 14.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)Google Scholar
  15. 15.
    Felzenszwalb, P., McAllester, D., Ramaman, D.: A discriminatively trained and multiscale: deformable part model. In: CVPR, pp. 1–8 (2008)Google Scholar
  16. 16.
    Ren, X.F., Ramanan, D.: Histograms of sparse codes for object detection. In: CVPR, pp. 3246–3253 (2013)Google Scholar
  17. 17.
    Ren, H.Y., Li, Z.N.: Object detection using generalization and efficiency balanced co-occurrence features. In: ICCV, pp. 46–54 (2015)Google Scholar
  18. 18.
    Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp. 580–587 (2014)Google Scholar
  19. 19.
    He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). doi: 10.1007/978-3-319-10578-9_23 Google Scholar
  20. 20.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2014)Google Scholar
  21. 21.
    Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). doi: 10.1007/978-3-319-10590-1_53 Google Scholar
  22. 22.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Zhantao Cao
    • 1
    Email author
  • Lixin Duan
    • 1
  • Guowu Yang
    • 1
  • Ting Yue
    • 2
  • Qin Chen
    • 3
  • Huazhu Fu
    • 4
  • Yanwu Xu
    • 5
  1. 1.The Big Data Research CenterUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
  3. 3.Sichuan Academy of Medical Sciences and Sichuan Provincial People’s HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
  4. 4.Agency for ScienceTechnology and ResearchSingaporeSingapore
  5. 5.Guangzhou Shiyuan Electronics Co., Ltd.GuangzhouChina

Personalised recommendations