Micro-CT Guided 3D Reconstruction of Histological Images

  • Kai NagaraEmail author
  • Holger R. Roth
  • Shota Nakamura
  • Hirohisa Oda
  • Takayasu Moriya
  • Masahiro Oda
  • Kensaku Mori
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10530)


Histological images are very important for diagnosis of cancer and other diseases. However, during the preparation of the histological slides for microscopy, the 3D information of the tissue specimen gets lost. Therefore, many 3D reconstruction methods for histological images have been proposed. However, most approaches rely on the histological 2D images alone, which makes 3D reconstruction difficult due to the large deformations introduced by cutting and preparing the histological slides. In this work, we propose an image-guided approach to 3D reconstruction of histological images. Before histological preparation of the slides, the specimen is imaged using X-ray microtomography (micro CT). We can then align each histological image back to the micro CT image utilizing non-rigid registration. Our registration results show that our method can provide smooth 3D reconstructions with micro CT guidance.


Micro CT Histological image 3D reconstruction Feature matching Registration 



Parts of this research were supported by the Kakenhi by MEXT and JSPS (26108006) and the JSPS Bilateral International Collaboration Grants.


  1. 1.
    Ceritoglu, C., Wang, L., Selemon, L.D., Csernansky, J.G., Miller, M.I., Ratnanather, J.T.: Large deformation diffeomorphic metric mapping registration of reconstructed 3D histological section images and in vivo MR images. Front. Hum. Neurosci. 4, 43 (2010)Google Scholar
  2. 2.
    Ou, Y., Shen, D., Feldman, M., Tomaszewski, J., Davatzikos, C.: Non-rigid registration between histological and MR images of the prostate: a joint segmentation and registration framework. In: Computer Vision and Pattern Recognition Workshops, pp. 125–132. IEEE (2009)Google Scholar
  3. 3.
    Hallack, A., Papież, B.W., Wilson, J., Wang, L.M., Maughan, T., Gooding, M.J., Schnabel, J.A.: Correlating tumour histology and ex vivo MRI using dense modality-independent patch-based descriptors. In: Wu, G., Coupé, P., Zhan, Y., Munsell, B., Rueckert, D. (eds.) Patch-MI 2015. LNCS, vol. 9467, pp. 137–145. Springer, Cham (2015). doi: 10.1007/978-3-319-28194-0_17 CrossRefGoogle Scholar
  4. 4.
    Chicherova, N., Fundana, K., Müller, B., Cattin, P.C.: Histology to \({\mu }\)CT data matching using landmarks and a density biased RANSAC. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 243–250. Springer, Cham (2014). doi: 10.1007/978-3-319-10404-1_31 Google Scholar
  5. 5.
    Lobachev, O., Ulrich, C., Steiniger, B.S., Wilhelmi, V., Stachniss, V., Guthe, M.: Feature-based multi-resolution registration of immunostained serial sections. Med. Image Anal. 35, 288–302 (2017)CrossRefGoogle Scholar
  6. 6.
    Ourselin, S., Roche, A., Subsol, G., Pennec, X., Ayache, N.: Reconstructing a 3D structure from serial histological sections. Image Vis. Comput. 19(12), 25–31 (2001)CrossRefGoogle Scholar
  7. 7.
    Alcantarilla, P.F., Nuevo, J., Bartoli, A.: Fast explicit diffusion for accelerated features in nonlinear scale spaces. In: British Machine Vision Conference (BMVC) (2013)Google Scholar
  8. 8.
    Glocker, B., Sotiras, A., Komodakis, N., Paragios, N.: Deformable medical image registration: setting the state of the art with discrete methods. Annu. Rev. Biomed. Eng. 13(1), 219–244 (2011)CrossRefGoogle Scholar
  9. 9.
    Komodakis, N., Tziritas, G., Paragios, N.: Fast, approximately optimal solutions for single and dynamic MRFs. In: Computer Vision and Pattern Recognition 2007, CVPR, pp. 1–8. IEEE (2007)Google Scholar
  10. 10.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kai Nagara
    • 1
    Email author
  • Holger R. Roth
    • 2
  • Shota Nakamura
    • 3
  • Hirohisa Oda
    • 1
  • Takayasu Moriya
    • 2
  • Masahiro Oda
    • 2
  • Kensaku Mori
    • 2
  1. 1.Graduate School of Information ScienceNagoya UniversityNagoyaJapan
  2. 2.Graduate School of InformaticsNagoya UniversityNagoyaJapan
  3. 3.Graduate School of MedicineNagoya UniversityNagoyaJapan

Personalised recommendations