Skip to main content

Methylmercury in Managed Wetlands

  • Chapter
  • First Online:
Multifunctional Wetlands

Abstract

Methylmercury (MeHg) is a bioaccumulative and neurotoxic species of mercury that is produced in anoxic environments, such as wetlands, via microbially-mediated processes. While the mercury cycle and MeHg production in natural wetlands has been relatively well studied, little attention has been paid to the MeHg dynamics of artificial wetlands. This chapter reviews the extent, drivers, and consequences of MeHg production in wetlands created for the management of stormwater runoff or the provision of aquatic habitat, as well as how MeHg production and concentrations vary in response to specific management interventions in these environments. Methylmercury in artificial wetlands likely derives mostly from internal production by sulfate reducing bacteria. Construction strategies have important implications for the MeHg dynamics of artificial wetlands because sites created by flooding upland areas experience increased net MeHg production early in their life, followed by subsequent declines. Artificial wetland created by excavation into underlying soil, however, usually have low net MeHg production and concentrations after floodup, which subsequently rises as organic matter and a typical mercury methylating microflora develop. Minor dryout-rewetting cycles appear to have little effect on MeHg production, but major dryouts can elevate MeHg concentrations or export for weeks or months. Dredging appears to result in only a temporary reduction in MeHg production, with net MeHg production and concentrations rapidly rebounding. Artificial wetlands may be important in the landscape-level MeHg cycle, but questions remain about the extent, seasonality, and drivers of aqueous and biotic export of MeHg from these systems. More research is also needed on the MeHg dynamics of different types of treatment wetlands, the influence of different climates and wastewater streams, and the extent and biogeochemical drivers of methylation and demethylation in these managed systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acha D, Iniguez V, Roulet M, Guimarães JRD, Luna R, Alanoca L, Sanchez S (2005) Sulfate-reducing bacteria in floating macrophyte rhizospheres from an Amazonian floodplain lake in Bolivia and their association with Hg methylation. Appl Environ Microbiol 71:7531–7535. https://doi.org/10.1128/AEM.71.11.7531-7535.2005

    Article  CAS  Google Scholar 

  • Ã…kerblom S, Bishop K, Björn E, Lambertsson L, Eriksson T, Nilsson MB (2013) Significant interaction effects from sulfate deposition and climate on sulfur concentrations constitute major controls on methylmercury production in peatlands. Geochim Cosmochim Acta 102:1–11. https://doi.org/10.1016/j.gca.2012.10.025

    Article  CAS  Google Scholar 

  • Alam SK, Ager LA, Rosegger TM, Lange TR (1996) The effects of mechanical harvesting of floating plant tussock communities on water quality in Lake Istokpoga, Florida. Lake Reservoir Manage 12:455–461. https://doi.org/10.1080/07438149609354285

    Article  CAS  Google Scholar 

  • Amirbahman A, Reid AL, Haines TA, Kahl S, Arnold C (2002) Association of methylmercury with dissolved humic acids. Environ Sci Technol 36:690–695. https://doi.org/10.1021/es011044qAmir

    Article  CAS  Google Scholar 

  • Avramescu M-L, Yumvihoze E, Hintelmann H, Ridal J, Fortin D, Lean DRS (2011) Biogeochemical factors influencing net mercury methylation in contaminated freshwater sediments from the St. Lawrence River in Cornwall, Ontario, Canada. Sci Total Environ 409:968–978. https://doi.org/10.1016/j.scitotenv.2010.11.016

    Article  CAS  Google Scholar 

  • Bae H-S, Dierberg FE, Ogram A (2014) Syntrophs dominate sequences associated with the mercury methylation-related gene hgcA in the water conservation areas of the Florida Everglades. Appl Environ Microbiol 80:6517–6526. https://doi.org/10.1128/AEM.01666-14

    Article  CAS  Google Scholar 

  • Bailey LT, Mitchell CPJ, Engstrom DR, Berndt ME, Coleman Wasik JK, Johnson NW (2017) Influence of porewater sulfide on methylmercury production and partitioning in sulfate-impacted lake sediments. Sci Total Environ 580:1197–1204. https://doi.org/10.1016/j.scitotenv.2016.12.078

    Article  CAS  Google Scholar 

  • Balcombe CK, Anderson JT, Fortney RH, Rentch JS, Grafton WN, Kordek WS (2005) A comparison of plant communities in mitigation and reference wetlands in the mid-Appalachians. Wetlands 25:130–142

    Article  Google Scholar 

  • Balogh SJ, Swain EB, Nollet YH (2006) Elevated methylmercury concentrations and loadings during flooding in Minnesota rivers. Sci Total Environ 368:138–148

    Article  CAS  Google Scholar 

  • Balogh SJ, Swain EB, Nollet YH (2008) Characteristics of mercury speciation in Minnesota rivers and streams. Environ Pollut 154:3–11. https://doi.org/10.1016/j.envpol.2007.11.014

    Article  CAS  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384. https://doi.org/10.1016/S0168-6445(03)00046-9

    Article  CAS  Google Scholar 

  • Bates LM, Hall BD (2012) Concentrations of methylmercury in invertebrates from wetlands in the Prairie Pothole Region of North America. Environ Pollut 160:153–160

    Article  CAS  Google Scholar 

  • Bates AL, Orem WH, Harvey JW, Spiker EC (2002) Tracing sources of sulfur in the Florida Everglades. J Environ Qual 31:287–299. https://doi.org/10.2134/jeq2002.0287

    Article  CAS  Google Scholar 

  • Benoit JM, Gilmour CC, Mason RP, Heyes A (1999) Sulfide controls on mercury speciation and biovailability to methylating bacteria in sediment pore waters. Environ Sci Technol 33:951–957. https://doi.org/10.1021/es9808200

    Article  CAS  Google Scholar 

  • Benoit JM, Gilmour CC, Heyes A, Mason RP, Miller CL (2003) Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. In: Cai Y, Braids OC (eds) Biogeochemistry of environmentally important trace elements. American Chemical Society, San Diego, CA, pp 262–297

    Google Scholar 

  • Biester H, Bindler R, Martinez-Cortizas A, Engstrom DR (2007) Modeling the past atmospheric deposition of mercury using natural archives. Environ Sci Technol 41:4851–4860. https://doi.org/10.1021/es0704232

    Article  CAS  Google Scholar 

  • Black FA, Poulin BA, Flegal AR (2012) Factors controlling the abiotic photo-degradation of monomethylmercury in surface waters. Geochim Cosmochim Acta 84:492–507. https://doi.org/10.1016/j.gca.2012.01.019

    Article  CAS  Google Scholar 

  • Boucher O, Jacobson SW, Plusquellec P, Dewailly E, Ayotte P, Forget-Dubois N, Jacobson JL, Muckle G (2012) Prenatal methylmercury, postnatal lead exposure, and evidence of Attention Deficit/Hyperactivity Disorder among Inuit Children in Arctic Québec. Environ Health Perspect 120:1456–1461. https://doi.org/10.1289/ehp.1204976

    Article  CAS  Google Scholar 

  • Brasso RL, Cristol DA (2007) Effects of mercury exposure on the reproductive success of tree swallows (Tachycineta bicolor). Ecotoxicology 17:133–141. https://doi.org/10.1007/s10646-007-0163-z

    Article  CAS  Google Scholar 

  • Brix H (1997) Do macrophytes play a role in constructed treatment wetlands? Water Sci Technol 35:11–17. https://doi.org/10.1016/S0273-1223(97)00047-4

    Article  CAS  Google Scholar 

  • Bromley PT, Buhlmann KA, Helfrich LA (1985) Management of wood ducks on private lands and waters. Virginia Cooperative Extension Service, Virginia State University, Petersburg, VA

    Google Scholar 

  • Bruland GL, Richardson CJ (2006) Comparison of soil organic matter in created, restored and paired natural wetlands in North Carolina. Wetl Ecol Manage 14:245–251. https://doi.org/10.1007/s11273-005-1116-z

    Article  CAS  Google Scholar 

  • Campbell DA, Cole CA, Brooks RP (2002) A comparison of created and natural wetlands in Pennsylvania, USA. Wetl Ecol Manage 10:41–49

    Article  Google Scholar 

  • Chavan PV, Dennett KE, Marchand EA, Gustin MS (2007) Evaluation of small-scale constructed wetland for water quality and Hg transformation. J Hazard Mater 149:543–547

    Article  CAS  Google Scholar 

  • Choi S-C, Chase T, Bartha R (1994) Enzymatic catalysis of mercury methylation by Desulfovibrio desulfuricans LS. Appl Environ Microbiol 60:1342–1346

    CAS  Google Scholar 

  • Christensen GA, Wymore AM, King AJ, Podar M, Hurt RA Jr, Santillan EU, Soren A, Brandt CC, Brown SD, Palumbo AV, Wall JD, Gilmour CC, Elias DA (2016) Development and validation of broad-range qualitative and clade-specific quantitative molecular probes for assessing mercury methylation in the environment. Appl Environ Microbiol 82(19):6068–6078. https://doi.org/10.1128/AEM.01271-16

    Article  CAS  Google Scholar 

  • Chumchal MM, Drenner RW (2015) An environmental problem hidden in plain sight? Small human-made ponds, emergent insects, and mercury contamination of biota in the Great Plains: an environmental problem hidden in plain sight. Environ Toxicol Chem 34:1197–1205. https://doi.org/10.1002/etc.2954

    Article  CAS  Google Scholar 

  • Coleman Wasik JK, Engstrom DR, Mitchell CPJ et al (2015) The effects of hydrologic fluctuation and sulfate regeneration on mercury cycling in an experimental peatland: drought increases mercury in peatlands. J Geophys Res Biogeo 120:1697–1715. https://doi.org/10.1002/2015JG002993

    Article  CAS  Google Scholar 

  • Compeau G, Bartha R (1984) Methylation and demethylation of mercury under controlled redox, pH and salinity conditions. Appl Environ Microbiol 48:1203–1207

    CAS  Google Scholar 

  • Compeau GC, Bartha R (1985) Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50:498–502

    CAS  Google Scholar 

  • Correia RRS, de Oliveira DCM, Guimarães JRD (2012) Total mercury distribution and volatilization in microcosms with and without the aquatic macrophyte Eichhornia crassipes. Aquat Geochem 18:421–423

    Article  CAS  Google Scholar 

  • Cosio C, Flück R, Regier N, Slaveykova VI (2014) Effects of macrophytes on the fate of mercury in aquatic systems: Hg and macrophytes. Environ Toxicol Chem 33:1225–1237. https://doi.org/10.1002/etc.2499

    Article  CAS  Google Scholar 

  • de Wit HA, Kainz MJ, Lindholm M (2012) Methylmercury bioaccumulation in invertebrates of boreal streams in Norway: effects of aqueous methylmercury and diet retention. Environ Pollut 164:235–241. https://doi.org/10.1016/j.envpol.2012.01.041

    Article  CAS  Google Scholar 

  • Desrosiers M, Planas D, Mucci A (2006) Total mercury and methylmercury accumulation in periphyton of Boreal Shield Lakes: influence of watershed physiographic characteristics. Sci Total Environ 355:247–258. https://doi.org/10.1016/j.scitotenv.2005.02.036

    Article  CAS  Google Scholar 

  • Domagalski J (1998) Occurrence and transport of total mercury and methyl mercury in the Sacramento River Basin, California. J Geochem Explor 64:277–291

    Article  CAS  Google Scholar 

  • Drake J, Guo Y (2008) Maintenance of Wet Stormwater Ponds in Ontario. Canadian Water Resources Journal 33(4):351–368. https://doi.org/10.4296/cwrj3304351

  • Driscoll CT, Blette V, Yan C, Schofield CL, Munson Rm Holsapple J (1995) The role of dissolved organic carbon in the chemistry and bioavailability of mercury in remote Adirondack lakes. In: Porcella DB, Huckabee JW, Wheatley B (eds) Proceedings of the third international conference on mercury as a global pollutant. Springer, New York, pp 499–508

    Chapter  Google Scholar 

  • Driscoll CT, Holsapple J, Schofield CL, Munson R (1998) The chemistry and transport of mercury in a small wetland in the Adirondack region of New York, USA. Biogeochemistry 40:137–146

    Article  CAS  Google Scholar 

  • Driscoll CT, Mason RP, Chan HM et al (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983. https://doi.org/10.1021/es305071v

    Article  CAS  Google Scholar 

  • Drott A, Lambertsson L, Björn E, Skyllberg U (2008) Do potential methylation rates reflect accumulated methyl mercury in contaminated sediments? Environ Sci Technol 42:153–158. https://doi.org/10.1021/es0715851

    Article  CAS  Google Scholar 

  • Drott A, Lambertsson L, Björn E, Skyllberg U (2007) Importance of Dissolved Neutral Mercury Sulfides for Methyl Mercury Production in Contaminated Sediments. Environ Sci Technol 41:2270–2276. https://doi.org/10.1021/es061724z

    Article  CAS  Google Scholar 

  • Duncan CP, Groffman PM (1994) Comparing microbial parameters in natural and constructed wetlands. J. J Environ Qual 23:298–305

    Article  Google Scholar 

  • Eckley CS, Branfireun B (2008) Mercury mobilization in urban stormwater runoff. Sci Total Environ 403:164–177. https://doi.org/10.1016/j.scitotenv.2008.05.021

    Article  CAS  Google Scholar 

  • Eckley CS, Hintelmann H (2006) Determination of mercury methylation potentials in the water column of lakes across Canada. Sci Total Environ 368:111–125. https://doi.org/10.1016/j.scitotenv.2005.09.042

    Article  CAS  Google Scholar 

  • Eckley CS, Luxton TP, Goetz J, McKernan J (2017) Water-level fluctuations influence sediment porewater chemistry and methylmercury production in a flood-control reservoir. Environ Pollut 222:32–41. https://doi.org/10.1016/j.envpol.2017.01.010

    Article  CAS  Google Scholar 

  • Edmonds ST, O’Driscoll NJ, Hillier NK et al (2012) Factors regulating the bioavailability of methylmercury to breeding rusty blackbirds in northeastern wetlands. Environ Pollut 171:148–154. https://doi.org/10.1016/j.envpol.2012.07.044

    Article  CAS  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE et al (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142. https://doi.org/10.1111/j.1461-0248.2007.01113.x

    Article  Google Scholar 

  • Feng S, Ai Z, Zheng S, Binhe G, Yuncong L (2014) Effects of dryout and inflow water quality on mercury methylation in a constructed wetland. Water Air Soil Pollut 255:1929. https://doi.org/10.1007/s11270-014-1929-6

    Article  CAS  Google Scholar 

  • Figueiredo NLL, Areias A, Mendes R, Canário J, Duarte A, Carvalho C (2014) Mercury-resistant bacteria from salt marsh of Tagus Estuary: the influence of plants presence and mercury contamination levels. J Toxicol Environ Health A 77:959–971. https://doi.org/10.1080/15287394.2014.911136

    Article  CAS  Google Scholar 

  • Fitzgerald WF, Engstrom DR, Mason RP, Nater EA (1998) The case for atmospheric mercury contamination in remote areas. Environ Sci Technol 32:1–7

    Article  CAS  Google Scholar 

  • Fleck JA, Gill G, Bergamaschi BA, Kraus TEC, Downing BD, Alpers CN (2014) Concurrent photolytic degradation of aqueous methylmercury and dissolved organic matter. Sci Total Environ 484:263–275. https://doi.org/10.1016/j.scitotenv.2013.03.107

    Article  CAS  Google Scholar 

  • Fleck JA, Marvin-DiPasquale M, Eagles-Smith CA, Ackerman JT, Lutz MA, Tate M, Alpers CN, Hall BD, Krabbenhoft DP, Eckley CS (2016) Mercury and methylmercury in aquatic sediment across western North America. Sci Total Environ 568:727–738. https://doi.org/10.1016/j.scitotenv.2016.03.044

    Article  CAS  Google Scholar 

  • Fleming EJ, Mack EE, Green PG, Nelson DC (2006) Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Microbiol 72:457–464. https://doi.org/10.1128/AEM.72.1.457-464.2006

    Article  CAS  Google Scholar 

  • Fortin D, Goulet R, Roy M (2000) Seasonal cycling of Fe and S in a constructed wetland: the role of sulfate-reducing bacteria. Geomicrobiol J 17:221–235

    Article  CAS  Google Scholar 

  • Galloway M, Branfireun B (2004) Mercury dynamics of a temperate forested wetland. Sci Total Environ 325:239–254. https://doi.org/10.1016/j.scitotenv.2003.11.010

    Article  CAS  Google Scholar 

  • Gauci V, Matthews E, Dise N, Walter B, Koch D, Granberg G, Vile M (2004) Sulfur pollution suppression of the wetland methane source in the twentieth and twenty-first centuries. Proc Natl Acad Sci U S A 101(34):12583–12587. https://doi.org/10.1073/pnas.0404412101

    Article  CAS  Google Scholar 

  • Gentès S, Maury-Brachet R, Guyoneaud R, Monperrus M, André J-M, Davail S, Legeay A (2013a) Mercury bioaccumulation along food webs in temperate aquatic ecosystems colonized by aquatic macrophytes in south western France. Ecotoxicol Environ Saf 91:180–187. https://doi.org/10.1016/j.ecoenv.2013.02.001

    Article  CAS  Google Scholar 

  • Gentès S, Monperrus M, Legeay A, Maury-Brachet DS, André J-M, Guyoneaud R (2013b) Incidence of invasive macrophytes on methylmercury budget in temperate lakes: central role of bacterial periphytic communities. Environ Pollut 172:116–123. https://doi.org/10.1016/j.envpol.2012.08.004

    Article  CAS  Google Scholar 

  • Gilmour CC, Henry EA, Mitchell R (1992) Sulfate stimulation of mercury methylation in freshwater sediments. Environ Sci Technol 26:2281–2287

    Article  CAS  Google Scholar 

  • Gilmour CC, Riedel GS, Ederington MC, Bell JT, Gill GA, Stordal MC (1998) Methylmercury concentrations and production rates across a trophic gradient in the northern Everglades. Biogeochemistry 40:327–345

    Article  CAS  Google Scholar 

  • Gilmour CC, Podar M, Bullock AL, Graham AM, Brown SD, Somenahally A, Johs A, Hurt RA Jr, Bailey KL, Elias DA (2013) Mercury methylation by novel microorganisms from new environments. Environ Sci Technol 47:11810–11820. https://doi.org/10.1021/es403075t

    Article  CAS  Google Scholar 

  • Gionfriddo CM, Tate MT, Wick RR, Schultz MB, Zemla A, Thelen MP, Schofield R, Krabbenhoft DP, Holt KE, Moreau JW (2016) Microbial mercury methylation in Antarctic sea ice. Nat Microbiol 1:16127. https://doi.org/10.1038/nmicrobiol.2016.127

    Article  CAS  Google Scholar 

  • Gomes MVT, de Souza RR, Teles VS, Araújo Mendes É (2014) Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland. Chemosphere 103:228–233. https://doi.org/10.1016/j.chemosphere.2013.11.071

    Article  CAS  Google Scholar 

  • Graham AM, Aiken GR, Gilmour CC (2012a) Dissolved organic matter enhances microbial mercury methylation under sulfidic conditions. Environ Sci Technol 46:2715–2723. https://doi.org/10.1021/es203658f

    Article  CAS  Google Scholar 

  • Graham AM, Bullock AL, Maizel AC, Elias DA, Gilmour CC (2012b) Detailed assessment of the kinetics of Hg-cell association, Hg methylation, and methylmercury degradation in several Desulfovibrio species. Appl Environ Microbiol 78:7337–7346. https://doi.org/10.1128/AEM.01792-12

    Article  CAS  Google Scholar 

  • Greenway M (2004) Constructed wetlands for water pollution control processes—parameters and performance. Asia Pac J Chem Eng 12:491–504

    Google Scholar 

  • Grigal DF (2002) Inputs and outputs of mercury from terrestrial watersheds: a review. Environ Rev 10:1–39. https://doi.org/10.1139/a01-013

    Article  CAS  Google Scholar 

  • Guimarães JRD, Mauro JBN, Meili M, Sundbom M, Haglund AL, Coelho-Souza SA, Hylander LD (2006) Simultaneous radioassays of bacterial production and mercury methylation in the periphyton of a tropical and a temperate wetland. J Environ Manag 81:95–100. https://doi.org/10.1016/j.jenvman.2005.09.023

    Article  CAS  Google Scholar 

  • Gustin MS, Chavan PV, Dennett KE, Donaldson S, Marchand E, Feranadez G (2006a) Use of constructed wetlands with four different experimental designs to assess the potential for methyl and total Hg outputs. Appl Geochem 21:2023–2035

    Article  CAS  Google Scholar 

  • Gustin MS, Chavan PV, Dennett KE, Marchand EA, Donaldson S (2006b) Evaluation of wetland methyl mercury export as a function of experimental manipulations. J Environ Qual 35:2352–2359

    Article  CAS  Google Scholar 

  • Hall BD, Bodaly RA, Fudge RJP, Rudd JWM, Rosenberg DM (1997) Food as the dominant pathway of methylmercury uptake by fish. Water Air Soil Pollut 100:13–24

    CAS  Google Scholar 

  • Hall BD, Rosenberg DM, Wiens AP (1998) Methyl mercury in aquatic insects from an experimental reservoir. Can J Fish Aquat Sci 55(9):2036–2047

    Article  Google Scholar 

  • Hall BD, Louis VLS, Rolfhus KR, Bodaly RA, Beaty KG, Paterson MJ, Peech Cherewyk KA (2005) Impacts of reservoir creation on the biogeochemical cycling of methyl mercury and total mercury in boreal upland forests. Ecosystems 8:248–266. https://doi.org/10.1007/s10021-003-0094-3

    Article  CAS  Google Scholar 

  • Hall BD, Aiken GR, Krabbenhoft DP, Marvin-Dipasquale M, Swarzenski CM (2008) Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region. Environ Pollut 154:124–134. https://doi.org/10.1016/j.envpol.2007.12.017

    Article  CAS  Google Scholar 

  • Hamelin S, Amyot M, Barkay T, Wang Y, Planas D (2011) Methanogens: principal methylators of mercury in lake periphyton. Environ Sci Technol 45:7693–7700. https://doi.org/10.1021/es2010072

    Article  CAS  Google Scholar 

  • Hamelin S, Planas D, Amyot M (2015) Mercury methylation and demethylation by periphyton biofilms and their host in a fluvial wetland of the St. Lawrence River (QC, Canada). Sci Total Environ 512–513:464–471. https://doi.org/10.1016/j.scitotenv.2015.01.040

    Article  CAS  Google Scholar 

  • Harmon SM, King JK, Gladden JB, Chandler GT, Newman LA (2004) Methylmercury formation in a wetland mesocosm amended with sulfate. Environ Sci Technol 38:650–656. https://doi.org/10.1021/es030513g

    Article  CAS  Google Scholar 

  • Harris RC, Rudd JWM, Amyot M, Babiarz CL, Beaty KG, Blanchfield PJ, Bodaly RA, Branfireun BA, Gilmour CC, Graydon JA, Hetes A, Hintelmann H, Hurley JP, Kelly CA, Krabbenhoft DP, Lindberg SE, Mason RP, Paterson MJ, Podemski CL, Robinson A, Sandlands KA, Southworth GR, St. Louis VL, Tate MT (2007) Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition. Proc Nat Acad Sci U S A 104:16586–16591. https://doi.org/10.1073/pnas.0704186104

    Article  CAS  Google Scholar 

  • Haynes KM, Kane ES, Potvin L, Lilleskov EA, Kolka R, Mitchell CPJ (2017) Mobility and transport of mercury and methylmercury in peat as a function of changes in water table regime and plant functional groups: climate change and peat pore water Hg. Glob Biogeochem Cycles. https://doi.org/10.1002/2016GB005471

  • He T, Lu J, Yang F, Feng X (2007) Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario. Sci Total Environ 386:53–64. https://doi.org/10.1016/j.scitotenv.2007.07.022

    Article  CAS  Google Scholar 

  • Heal K, Drain SJ (2003) Sedimentation and sediment quality in sustainable urban drainage systems. In: Pratt CJ, Davies JW, Newman AP, Perry JL (eds) Proceedings of the 2nd national conference on sustainable drainage, Coventry, UK

    Google Scholar 

  • Hines ME, Poitras EN, Covelli S, Faganeli J, Emili A, Žižek S, Horvat M (2012) Mercury methylation and demethylation in Hg-contaminated lagoon sediments (Marano and Grado Lagoon, Italy). Estuar Coast Shelf Sci 113:85–95. https://doi.org/10.1016/j.ecss.2011.12.021

    Article  CAS  Google Scholar 

  • Hintelmann H, Keppel-Jones K, Evans RD (2000) Constants of mercury methylation and demethylation rates in sediments and comparison of tracer and ambient mercury availability. Environ Toxicol Chem 19:2204–2211

    Article  CAS  Google Scholar 

  • Hintelmann H, Harris R, Heyes A, Hurley JP, Kelly CA, Krabbenhoft DP, Lindberg S, Rudd JWM, Scott KJ, St. Louis VL (2002) Reactivity and mobility of new and old mercury deposition in a boreal forest ecosystem during the first year of the METAALICUS study. Environ Sci Technol 36:5034–5040. https://doi.org/10.1021/es025572t

    Article  CAS  Google Scholar 

  • Hoggarth CGJ, Hall BD, Mitchell CPJ (2015) Mercury methylation in high and low-sulphate impacted wetland ponds within the prairie pothole region of North America. Environ Pollut 205:269–277. https://doi.org/10.1016/j.envpol.2015.05.046

    Article  CAS  Google Scholar 

  • Holmes J, Lean D (2006) Factors that influence methylmercury flux rates from wetland sediments. Sci Total Environ 368:306–319. https://doi.org/10.1016/j.scitotenv.2005.11.027

    Article  CAS  Google Scholar 

  • Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA (2013) Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environ Sci Technol 47:14385–14394. https://doi.org/10.1021/es304370g

    Article  CAS  Google Scholar 

  • Jay JA, Murray KJ, Gilmour CC, Mason RP, Morel FMM, Roberts AL, Hemond HF (2002) Mercury Methylation by Desulfovibrio desulfuricans ND132 in the Presence of Polysulfides. Appl Environ Microbiol 68:5741–5745. https://doi.org/10.1128/AEM.68.11.5741-5745.2002

    Article  CAS  Google Scholar 

  • Jennifer Drake, Yiping Guo, (2008) Maintenance of Wet Stormwater Ponds in Ontario. Canadian Water Resources Journal 33 (4):351-368

    Google Scholar 

  • Jensen S, Jernelöv A (1969) Biological methylation of mercury in aquatic organisms. Nature 223:753–754. https://doi.org/10.1038/223753a0

    Article  CAS  Google Scholar 

  • Jonsson S, Skyllberg U, Nilsson MB, Lundberg E, Andersson A, Björn E (2014) Differentiated availability of geochemical mercury pools controls methylmercury levels in estuarine sediment and biota. Nat Commun 5:4624–4631. https://doi.org/10.1038/ncomms5624

    Article  CAS  Google Scholar 

  • Jeremiason JD, Engstrom DR, Swain EB, Nater EA, Johnson BM, Almendinger JE, Monson BA, Kolka RK (2006) Sulfate addition increases methylmercury production in an experimental wetland. Environ Sci Technol 40:3800–3806. https://doi.org/10.1021/es0524144

    Article  CAS  Google Scholar 

  • Kadlec RH, Wallace S (2009) Treatment wetlands, 2nd edn. CRC Press, Taylor & Francis, New York

    Google Scholar 

  • Kao CM, Wang JY, MJ W (2001) Evaluation of atrazine removal processes in a wetland. Water Sci Technol 44:539–544

    CAS  Google Scholar 

  • Karagas MR, Choi AL, Oken E, Horvat M, Schoeny R, Kamai E, Cowell W, Grandjean P, Korrick S (2012) Evidence on the human health effects of low-level methylmercury exposure. Environ Health Perspect 120:799–806. https://doi.org/10.1289/ehp.1104494

    Article  CAS  Google Scholar 

  • Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP (2006) Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol 72:7919–7921. https://doi.org/10.1128/AEM.01602-06

    Article  CAS  Google Scholar 

  • King JK, Kostka JE, Frischer ME, Saunders FM (2000) Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Appl Environ Microbiol 66:2430–2437. https://doi.org/10.1128/AEM.66.6.2430-2437.2000

    Article  CAS  Google Scholar 

  • King JK, Harmon SM, TT F, Gladden JB (2002) Mercury removal, methylmercury formation, and sulfate-reducing bacteria profiles in wetland mesocosms. Chemosphere 46:859–870

    Article  CAS  Google Scholar 

  • Kivaisi AK (2001) The potential for constructed wetlands for wastewater treatment and reuse in developing countries: a review. Ecol Eng 16:545–560

    Article  Google Scholar 

  • Klapstein SJ, Ziegler SE, Risk DA, O’Driscoll NJ (2017) Quantifying the effects of photoreactive dissolved organic matter on methylmercury photodemethylation rates in freshwaters. Environ Toxicol Chem 36(6):1493–1502. https://doi.org/10.1002/etc.3690

    Article  CAS  Google Scholar 

  • Kosolapov DB, Kuschk P, Vainshtein MB, Vatsourina AV, Wießner A, Kästner M, Müller RA (2004) Microbial processes of heavy metal removal from carbon-deficient effluents in constructed wetlands. Eng Life Sci 4:403–411. https://doi.org/10.1002/elsc.200420048

    Article  CAS  Google Scholar 

  • Krabbenhoft DP, Benoit JM, Babiarz CL, Hurley JP, Andren AW (1995) Mercury cycling in the Allequash Creek watershed, northern Wisconsin. In: Porcella DB, Huckabee JW, Wheatley B (eds) Mercury as a global pollutant. Springer, Dordrecht, The Netherlands, pp 425–433

    Chapter  Google Scholar 

  • Kronberg R-M, Tjerngren I, Drott A, Björn E, Skyllberg U (2012) Net degradation of methyl mercury in alder swamps. Environ Sci Technol 46:13144–13151. https://doi.org/10.1021/es303543k

    Article  CAS  Google Scholar 

  • Kronberg R-M, Jiskra M, Wiederhold JG, Björn E, Skyllberg U (2016) Methyl mercury formation in hillslope soils of boreal forests: the role of forest harvest and anaerobic microbes. Environ Sci Technol 50:9177–9186. https://doi.org/10.1021/acs.est.6b00762

    Article  CAS  Google Scholar 

  • Langer CS, Fitzgerald WF, Visscher PT, Vandal GM (2001) Biogeochemical cycling of methylmercury at Barn Island salt marsh, Stonington, CT, USA. Wetl Ecol Manage 9:295–310

    Article  CAS  Google Scholar 

  • Lavoie RA, Jardine TD, Chumchal MM, Kidd KA, Campbell LM (2013) Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ Sci Technol 47:13385–13394

    Article  CAS  Google Scholar 

  • Lazaro WL, Diez S, da Silva CJ, Ignacio ARA, Guimaraes JRD (2016) Waterscape determinants of net mercury methylation in a tropical wetland. Environ Res 150:438–445

    Article  CAS  Google Scholar 

  • Lee C, Fletcher TD, Sun G (2009) Nitrogen removal in constructed wetland systems. Eng Life Sci 9:11–22. https://doi.org/10.1002/elsc.200800049

    Article  CAS  Google Scholar 

  • Li Y, Mao Y, Liu G, Tachiev G, Roelant D, Feng X, Cai Y (2010) Degradation of methylmercury and its effects on mercury distribution and cycling in the Florida Everglades. Environ Sci Technol 44:6661–6666. https://doi.org/10.1021/es1010434

    Article  CAS  Google Scholar 

  • Li Y, Cai Y (2012) Progress in the study of mercury methylation and demethylation in aquatic environments. Chin Sci Bull 58:177–185. https://doi.org/10.1007/s11434-012-5416-4

    Article  CAS  Google Scholar 

  • Lin C-C, Yee N, Barkay T (2012) Microbial transformations in the mercury cycle. In: Lui G, Cai Y, O’Driscoll N (eds) Environmental chemistry and toxicology of mercury. Wiley-Blackwell, Hoboken, pp 155–191

    Google Scholar 

  • Lindberg SE, Hanson PJ, Meyers TP, Kim K-H (1998) Air/surface exchange of mercury vapor over forests—the need for a reassessment of continental biogenic emissions. Atmos Environ 32:895–908. https://doi.org/10.1016/S1352-2310(97)00173-8

    Article  CAS  Google Scholar 

  • Lindberg S, Bullock R, Ebinghaus R, Engstrom D, Feng X, Fitzgerald W, Pirrone N, Prestbo E, Seigneur C (2007) A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. AMBIO J Hum Environ 36:19–33

    Article  CAS  Google Scholar 

  • Little ME, Burgess NM, Broders HG, Campbell LM (2015) Mercury in little brown bat (Myotis lucifugus) maternity colonies and its correlation with freshwater acidity in Nova Scotia, Canada. Environ Sci Technol 49:2059–2065. https://doi.org/10.1021/es5050375

    Article  CAS  Google Scholar 

  • Liu G, Naja GM, Kalla P, Scheidt D, Gaiser E, Cai Y (2010) Legacy and fate of mercury and methylmercury in the Florida Everglades. Environ Sci Technol 45:496–501

    Article  CAS  Google Scholar 

  • Liu G, Li Y, Cai Y (2012) Adsorption of mercury on solids in the aquatic environment. In: Liu G, Cai Y, O’Driscoll N (eds) Environmental chemistry and toxicology of mercury, 1st edn. Wiley, Hoboken, NJ, pp 367–387

    Google Scholar 

  • Lovley DR, Klug MJ (1983) Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl Environ Microbiol 45:187–192

    CAS  Google Scholar 

  • Lu X, Liu Y, Johs A, Zhao L, Wang T, Yang Z, Lin H, Elias D, Pierce EM, Liang L, Barkay T, Gu B (2016) Anaerobic mercury methylation and demethylation by Geobacter bemidjiensis Bem. Environ Sci Technol 50:4366–4373. https://doi.org/10.1021/acs.est.6b00401

    Article  CAS  Google Scholar 

  • Ma Z, Cai Y, Li B, Chen J (2010) Managing wetland habitats for waterbirds: an international perspective. Wetlands 30:15–27. https://doi.org/10.1007/s13157-009-0001-6

    Article  CAS  Google Scholar 

  • Mahaffey KR, Clickner RP, Bodurow CC (2003) Blood organic mercury and dietary mercury intake: national health and nutrition examination survey, 1999 and 2000. Environ Health Perspect 112:562–570. https://doi.org/10.1289/ehp.6587

    Article  CAS  Google Scholar 

  • Mailman M, Stepnuk L, Cicek N, Bodaly RA (2006) Strategies to lower methyl mercury concentrations in hydroelectric reservoirs and lakes: a review. Sci Total Environ 368:224–235. https://doi.org/10.1016/j.scitotenv.2005.09.041

    Article  CAS  Google Scholar 

  • Malaviya P, Singh A (2012) Constructed wetlands for management of urban stormwater runoff. Crit Rev Environ Sci Technol 42:2153–2214. https://doi.org/10.1080/10643389.2011.574107

    Article  CAS  Google Scholar 

  • Mallison CT, Stocker RK, Cichra CE (2001) Physical and vegetative characteristics of floating islands. J Aquat Plant Manag 39:107–111

    Google Scholar 

  • Mao Y, Li Y, Richards J, Cai Y (2013) Investigating uptake and translocation of mercury species by sawgrass (Cladium jamaicense) using a stable isotope tracer technique. Environ Sci Technol 47:9678–9684. https://doi.org/10.1021/es400546s

    Article  CAS  Google Scholar 

  • Marrugo-Negrete J, Enamorado-Montes G, Durango-Hernández J, Díez S (2017) Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands. Chemosphere 167:188–192. https://doi.org/10.1016/j.chemosphere.2016.09.130

    Article  CAS  Google Scholar 

  • Marvin-DiPasquale MC, Oremland RS (1998) Bacterial methylmercury degradation in Florida Everglades peat sediment. Environ Sci Technol 32:2556–2563

    Article  CAS  Google Scholar 

  • Marvin-DiPasquale M, Agee J, McGowan C, Oremland RS, Thomas M, Krabbenhoft D, Gilmour CC (2000) Methyl-mercury degradation pathways: a comparison among three mercury-impacted ecosystems. Environ Sci Technol 34:4908–4916. https://doi.org/10.1021/es0013125

    Article  CAS  Google Scholar 

  • Marvin-DiPasquale M, Agee JL (2003) Microbial mercury cycling in sediments of the San Francisco Bay-Delta. Estuaries 26:1517–1528

    Article  CAS  Google Scholar 

  • Marvin-DiPasquale M, Windham-Myers L, Agee JL, Kakouros E, Kieu LH, Fleck JA, Alpers CN, Stricker CA (2014) Methylmercury production in sediment from agricultural and non-agricultural wetlands in the Yolo Bypass, California, USA. Sci Total Environ 484:288–299. https://doi.org/10.1016/j.scitotenv.2013.09.098

    Article  CAS  Google Scholar 

  • Matthews DA, Babcock DB, Nolan JG, Prestigiacomo AR, Effler SW, Driscoll CT, Todorova SG, Kuhr KM (2013) Whole-lake nitrate addition for control of methylmercury in mercury-contaminated Onondaga Lake, NY. Environ Res 125:52–60. https://doi.org/10.1016/j.envres.2013.03.011

    Article  CAS  Google Scholar 

  • Mazrui NM, Jonsson S, Thota S, Zhao J, Mason RP (2016) Enhanced availability of mercury bound to dissolved organic matter for methylation in marine sediments. Geochim Cosmochim Acta 194:153–162. https://doi.org/10.1016/j.gca.2016.08.019

    Article  CAS  Google Scholar 

  • Meng B, Feng X, Qiu G, Li Z, Yao H, Shang L, Yan H (2016) The impacts of organic matter on the distribution and methylation of mercury in a hydroelectric reservoir in Wujiang River, Southwest China: the influence of organic matter on mercury cycling. Environ Toxicol Chem 35:191–199. https://doi.org/10.1002/etc.3181

    Article  CAS  Google Scholar 

  • Mergler D, Anderson HA, Chan LHM, Mahaffey KR, Murray M, Sakamoto M, Stern AH (2007) Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 36:3–11. https://doi.org/10.1579/0044-7447(2007)36[3:MEAHEI]2.0.CO;2

    Article  CAS  Google Scholar 

  • Miskimmin BM, Rudd JW, Kelly CA (1992) Influence of dissolved organic carbon, pH, and microbial respiration rates on mercury methylation and demethylation in lake water. Can J Fish Aquat Sci 49:17–22

    Article  CAS  Google Scholar 

  • Mitchell CPJ, Gilmour CC (2008) Methylmercury production in a Chesapeake Bay salt marsh. Journal of Geophysical Research. Biogeosciences 113:G00C04

    Google Scholar 

  • Mitchell CPJ, Branfireun BA, Kolka RK (2008a) Assessing sulfate and carbon controls on net methylmercury production in peatlands: an in situ mesocosm approach. Appl Geochem 23:503–518. https://doi.org/10.1016/j.apgeochem.2007.12.020

    Article  CAS  Google Scholar 

  • Mitchell CPJ, Branfireun BA, Kolka RK (2008b) Spatial characteristics of net methylmercury production hot spots in peatlands. Environ Sci Technol 42:1010–1016. https://doi.org/10.1021/es0704986

    Article  CAS  Google Scholar 

  • Moore TLC, Hunt WF (2012) Ecosystem service provision by stormwater wetlands and ponds—a means for evaluation? Water Res 46:6811–6823. https://doi.org/10.1016/j.watres.2011.11.026

    Article  CAS  Google Scholar 

  • Mueller P, Jensen K, Megonigal JP (2016) Plants mediate soil organic matter decomposition in response to sea level rise. Glob Chang Biol 22:404–414. https://doi.org/10.1111/gcb.13082

    Article  Google Scholar 

  • Munthe J, Bodaly RA, Branfireun BA, Driscoll CT, Gilmour C, Harris R, Horvat M, Lucotte M, Malm O (2007) Recovery of mercury-contaminated fisheries. Ambio 36:33–44. https://doi.org/10.1579/0044-7447(2007)36[33:ROMF]2.0.CO;2

    Article  CAS  Google Scholar 

  • Nelson EA, Specht WL, Knox AS (2006) Metal removal from water discharges by a constructed treatment wetland. Eng Life Sci 6:26–30. https://doi.org/10.1002/elsc.200620112

    Article  CAS  Google Scholar 

  • Obrist D, Johnson DW, Lindberg SE, Luo Y, Hararuk O, Bracho R, Battles JJ, Dail DB, Edmonds RL, Monson RK, Ollinger SV, Pallardy SG, Pregitzer KS, Todd DE (2011) Mercury distribution across 14 U.S. forests. Part I: spatial patterns of concentrations in biomass, litter, and soils. Environ Sci Technol 45:3974–3981. https://doi.org/10.1021/es104384m

    Article  CAS  Google Scholar 

  • O’Driscoll NJ, Lean DRS, Loseto LL, Carignan R, Siciliano SD (2004) Effect of dissolved organic carbon on the photoproduction of dissolved gaseous mercury in lakes: potential impacts of forestry. Environ Sci Technol 38:2664–2672. https://doi.org/10.1021/es034702a

    Article  CAS  Google Scholar 

  • Ontario Ministry of the Environment (2003) Stormwater management planning and design manual. MOE, Toronto, ON, Canada

    Google Scholar 

  • Orem W, Gilmour C, Axelrad D, Krabbenhoft D, Scheidt D, Kalla P, McCormick P, Gabriel M, Aiken G (2011) Sulfur in the south Florida ecosystem: distribution, sources, biogeochemistry, impacts, and management for restoration. Crit Rev Environ Sci Technol 41:249–288. https://doi.org/10.1080/10643389.2010.531201

    Article  CAS  Google Scholar 

  • Oswald CJ, Carey SK (2016) Total and methyl mercury concentrations in sediment and water of a constructed wetland in the Athabasca Oil Sands Region. Environ Pollut 213:628–637. https://doi.org/10.1016/j.envpol.2016.03.002

    Article  CAS  Google Scholar 

  • Pacyna EG, Pacyna JM, Steenhuisen F, Wilson S (2006) Global anthropogenic mercury emission inventory for 2000. Atmos Environ 40:4048–4063. https://doi.org/10.1016/j.atmosenv.2006.03.041

    Article  CAS  Google Scholar 

  • Pacyna JM, Travnikov O, De Simone F, Hedgecock IM, Sundseth K, Pacyna EG, Steenhuisen F, Pirrone N, Munthe J, Kindbom K (2016) Current and future levels of mercury atmospheric pollution on a global scale. Atmos Chem Phys 16:12495–12511. https://doi.org/10.5194/acp-16-12495-2016

    Article  CAS  Google Scholar 

  • Pangala SR, Reay DS, Heal KV (2010) Mitigation of methane emissions from constructed farm wetlands. Chemosphere 78:493–499. https://doi.org/10.1016/j.chemosphere.2009.11.042

    Article  CAS  Google Scholar 

  • Parks JM, Johs A, Podar M, Bridou R, Hurt RA Jr, Smith SD, Tomanicek SJ, Qian Y, Brown SD, Brandt CC, Palumbo AV, Smith JC, Wall JD, Elias DA, Liang L (2013) The genetic basis for bacterial mercury methylation. Science 339:1332–1335. https://doi.org/10.1126/science.1230667

    Article  CAS  Google Scholar 

  • Peng X, Liu F, Wang W-X, Ye Z (2012) Reducing total mercury and methylmercury accumulation in rice grains through water management and deliberate selection of rice cultivars. Environ Pollut 162:202–208. https://doi.org/10.1016/j.envpol.2011.11.024

    Article  CAS  Google Scholar 

  • Peralta RM, Ahn C, Gillevet PM (2013) Characterization of soil bacterial community structure and physicochemical properties in created and natural wetlands. Sci Total Environ 443:725–732. https://doi.org/10.1016/j.scitotenv.2012.11.052

    Article  CAS  Google Scholar 

  • Pickhardt PC, Folt CL, Chen CY, Klaue B, Blum JD (2002) Algal blooms reduce the uptake of toxic methylmercury in freshwater food webs. Proc Natl Acad Sci U S A 99:4419–4423

    Article  CAS  Google Scholar 

  • Pirrone N, Cinnirella S, Feng X, Finkelman RB, Friedli HR, Leaner J, Mason R, Mukherjee AB, Stracher GB, Streets DG, Telmer K (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10:5951–5964. https://doi.org/10.5194/acp-10-5951-2010

    Article  CAS  Google Scholar 

  • Podar M, Gilmour CC, Brandt CC, Soren A, Brown SD, Crable BR, Palumbo AV, Somenahally AC, Elias DA (2015) Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci Adv 1:e1500675–e1500675. https://doi.org/10.1126/sciadv.1500675

    Article  Google Scholar 

  • Robinson JB, Tuovinen OH (1984) Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: physiological, biochemical, and genetic analyses. Microbiol Rev 48(2):95–124

    CAS  Google Scholar 

  • Roden EE, Edmonds JW (1997) Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction versus iron-sulfide formation. Arch Hydrobiol 139:347–378

    CAS  Google Scholar 

  • Rothenberg SE, Windham-Myers L, Creswell JE (2014) Rice methylmercury exposure and mitigation: a comprehensive review. Environ Res 133:407–423. https://doi.org/10.1016/j.envres.2014.03.001

    Article  CAS  Google Scholar 

  • Roy V, Amyot M, Carignan R (2009) Beaver ponds increase methylmercury concentrations in Canadian Shield streams along vegetation and pond-age gradients. Environ Sci Technol 43:5605–5611. https://doi.org/10.1021/es901193x

    Article  CAS  Google Scholar 

  • Rumbold DG, Fink LE (2006) Extreme spatial variability and unprecedented methylmercury concentrations within a constructed wetland. Environ Monit Assess 112:115–135

    Article  CAS  Google Scholar 

  • Schaefer JK, Morel FM (2009) High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nat Geosci 2:123–126

    Article  CAS  Google Scholar 

  • Schaefer JK, Rocks SS, Zheng W, Liang L, Gu B, Morel FMM (2011) Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc Natl Acad Sci U S A 108:8714–8719. https://doi.org/10.1073/pnas.1105781108

    Article  CAS  Google Scholar 

  • Schaefer JK, Szczuka A, Morel FMM (2014) Effect of divalent metals on Hg(II) uptake and methylation by bacteria. Environ Sci Technol 48:3007–3013. https://doi.org/10.1021/es405215v

    Article  CAS  Google Scholar 

  • Schallenberg M, Jacob K (1993) The ecology of sediment bacteria in lakes and comparison with other aquatic ecosystems. Ecology 74(3):919–934. https://doi.org/10.2307/1940816

    Article  Google Scholar 

  • Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 36:12–19

    Article  CAS  Google Scholar 

  • Scholz M, Lee B (2005) Constructed wetlands: a review. Int J Environ Stud 62:421–447. https://doi.org/10.1080/00207230500119783

    Article  Google Scholar 

  • Schuster PF, Krabbenhoft DP, Naftz DL, Cecil D, Olson ML, Dewild JF, Susong DD, Green JR, Abbott ML (2002) Atmospheric mercury deposition during the last 270 years: a glacial ice core record of natural and anthropogenic sources. Environ Sci Technol 36:2303–2310. https://doi.org/10.1021/es0157503

    Article  CAS  Google Scholar 

  • Schuster PF, Shanley JB, Marvin-Dipasquale M, Reddy MM, Aiken GR, Roth DA, Taylor HE, Krabbenhoft DP, DeWild JF (2007) Mercury and organic carbon dynamics during runoff episodes from a northeastern USA watershed. Water Air Soil Pollut 187:89–108. https://doi.org/10.1007/s11270-007-9500-3

    Article  CAS  Google Scholar 

  • Schwesig D, Krebs O (2003) The role of ground vegetation in the uptake of mercury and methylmercury in a forest ecosystem. Plant Soil 253:445–455

    Article  CAS  Google Scholar 

  • Sellers P, Kelly CA, Rudd JWM, MacHutchon AR (1996) Photodegradation of methylmercury in lakes. Nature 380:694–697

    Article  CAS  Google Scholar 

  • Shih R, Robertson WD, Schiff SL, Rudolph DL (2011) Nitrate controls methyl mercury production in a streambed bioreactor. J Environ Qual 40:1586. https://doi.org/10.2134/jeq2011.0072

    Article  CAS  Google Scholar 

  • Simoneau M, Lucotte M, Garceau S, Laliberte D (2005) Fish growth rates modulate mercury concentrations in walley (Sander vitreus) from eastern Canadian lakes. Environ Res 98:73–82

    Article  CAS  Google Scholar 

  • Sinclair KA, Xie Q, Mitchell CPJ (2012) Methylmercury in water, sediment, and invertebrates in created wetlands of Rouge Park, Toronto, Canada. Environ Pollut 171:207–215. https://doi.org/10.1016/j.envpol.2012.07.043

    Article  CAS  Google Scholar 

  • Skyllberg U, Qian J, Frech W, Xia K, Bleam WF (2003) Distribution of mercury, methyl mercury and organic sulphur species in soil, soil solution and stream of a boreal forest catchment. Biogeochemistry 64:53–76

    Article  CAS  Google Scholar 

  • Skyllberg U, Xia K, Bloom PR, Nater EA, Bleam WF (2000) Binding of mercury(II) to reduced sulfur in soil organic matter along upland-peat soil transects. J Environ Qual 29:855–865

    Article  CAS  Google Scholar 

  • Smith SV, Renwick WH, Bartley JD, Buddemeier RW (2002) Distribution and significance of small, artificial water bodies across the United States landscape. Sci Total Environ 299:21–36

    Article  CAS  Google Scholar 

  • St. Louis VL, Rudd JW, Kelly CA, Beaty KG, Bloom NS, Flett RJ (1994) Importance of wetlands as sources of methyl mercury to boreal forest ecosystems. Can J Fish Aquat Sci 51:1065–1076

    Article  CAS  Google Scholar 

  • St. Louis VL, Rudd JW, Kelly CA, Beaty KG, Flett RJ, Roulet NT (1996) Production and loss of methylmercury and loss of total mercury from boreal forest catchments containing different types of wetlands. Environ Sci Technol 30:2719–2729

    Article  CAS  Google Scholar 

  • St. Louis VL, Rudd JWM, Kelly CA, Bodaly RA, Paterson MJ, Beaty KG, Hesslein RH, Heyes A, Majewski AR (2004) The rise and fall of mercury methylation in an experimental reservoir. Environ Sci Technol 38:1348–1358. https://doi.org/10.1021/es034424f

    Article  CAS  Google Scholar 

  • Stamenkovic J, Gustin MS, Dennett KE (2005) Net methyl mercury production versus water quality improvement in constructed wetlands: trade-offs in pollution control. Wetlands 25:748–757

    Article  Google Scholar 

  • Stolt MH, Genthner MH, Daniels WL, Groover VA, Nagle S, Haering KC (2000) Comparison of soil and other environmental conditions in constructed and adjacent palustrine reference wetlands. Wetlands 20:671–683

    Article  Google Scholar 

  • Stottmeister U, Wießner A, Kuschk P, Kappelmeyer U, Kästner M, Bederski O, Müller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117. https://doi.org/10.1016/j.biotechadv.2003.08.010

    Article  CAS  Google Scholar 

  • Strickman RJ (2017) Methylmercury in managed wetlands. Ph.D. dissertation, University of Toronto, Toronto, ON, Canada

    Google Scholar 

  • Strickman RJ, Mitchell CPJ (2016) Accumulation and translocation of methylmercury and inorganic mercury in Oryza sativa: an enriched isotope tracer study. Sci Total Environ 574:1415–1423. https://doi.org/10.1016/j.scitotenv.2016.08.068

    Article  CAS  Google Scholar 

  • Strickman RJ, Mitchell CPJ (2017) Methylmercury production and accumulation in urban stormwater ponds and habitat wetlands. Environ Pollut 221:326–334. https://doi.org/10.1016/j.envpol.2016.11.082

    Article  CAS  Google Scholar 

  • Strosnider WH, Schultz SE, Strosnider KAJ, Nairn RW (2017) Effects on the underlying water column by extensive floating treatment wetlands. J Environ Qual 46:201. https://doi.org/10.2134/jeq2016.07.0257

    Article  CAS  Google Scholar 

  • Tjerngren I, Karlsson T, Björn E, Skyllberg U (2011) Potential Hg methylation and MeHg demethylation rates related to the nutrient status of different boreal wetlands. Biogeochemistry 108:335–350. https://doi.org/10.1007/s10533-011-9603-1

    Article  CAS  Google Scholar 

  • Todorova SG, Driscoll CT, Matthews DA, Effler SW, Hines ME, Henry EA (2009) Evidence for regulation of monomethyl mercury by nitrate in a seasonally stratified, eutrophic lake. Environ Sci Technol 43:6572–6578

    Article  CAS  Google Scholar 

  • Trasande L, Landrigan PJ, Schechter C (2005) Public health and economic consequences of methyl mercury toxicity to the developing brain. Environ Health Perspect 113:590–596. https://doi.org/10.1289/ehp.7743

    Article  CAS  Google Scholar 

  • Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31:241–293. https://doi.org/10.1080/20016491089226

    Article  CAS  Google Scholar 

  • United Nations Environment Programme (UNEP) (2017) Minimata Convention on Mercury. Available via www.mercuryconvention.org. Accessed 23 Mar 2017

  • Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65. https://doi.org/10.1016/j.scitotenv.2006.09.014

    Article  CAS  Google Scholar 

  • Wadzuk BM, Rea M, Woodruff G, Flynn K, Traver RG (2010) Water-quality performance of a constructed stormwater wetland for all flow conditions. J Am Water Resour Assoc 46:385–394. https://doi.org/10.1111/j.1752-1688.2009.00408.x

    Article  CAS  Google Scholar 

  • Wang F, Zhang J (2012) Mercury contamination in aquatic ecosystems under a changing environment: implications for the Three Gorges Reservoir. Chin Sci Bull 58:141–149. https://doi.org/10.1007/s11434-012-5490-7

    Article  CAS  Google Scholar 

  • Weaver MA, Zablotowicz RM, Krutz LJ, Bryson CT, Locke MA (2012) Microbial and vegetative changes associated with development of a constructed wetland. Ecol Indic 13:37–45. https://doi.org/10.1016/j.ecolind.2011.05.005

    Article  CAS  Google Scholar 

  • Wiener JG, Krabbenhoft DP, Heinz GH, Scheuhammer AM (2003) Ecotoxicology of mercury. In: Hoffman DJ, Rattner BA, Burton GA, Cairns J (eds) Handbook of ecotoxicology, 2nd edn. CRC Press, Boca Raton, FL, pp 409–463

    Google Scholar 

  • Windham-Myers L, Marvin-DiPasquale M, Stricker CA, Agee JL, Kieu LH, Kakourous E (2013) Mercury cycling in agricultural and managed wetlands of California, USA: experimental evidence of vegetation-driven changes in sediment biogeochemistry and methylmercury production. Sci Total Environ 484:300–307. https://doi.org/10.1016/j.scitotenv.2013.05.028

    Article  CAS  Google Scholar 

  • Windham-Myers L, Fleck JA, Ackerman JT, Marvin-DiPasquale M, Striker CA, Heim WA, Bachand PA, Eagles-Smith CA, Gill G, Stephenson M, Alpers CN (2014a) Mercury cycling in agricultural and managed wetlands: a synthesis of methylmercury production, hydrologic export, and bioaccumulation from an integrated field study. Sci Total Environ 484:221–231. https://doi.org/10.1016/j.scitotenv.2014.01.033

    Article  CAS  Google Scholar 

  • Windham-Myers L, Marvin-DiPasquale M, Kakouros E, Agee JL, Kieu LH, Stricker CA, Fleck JA, Ackerman JT (2014b) Mercury cycling in agricultural and managed wetlands of California, USA: seasonal influences of vegetation on mercury methylation, storage, and transport. Sci Total Environ 484:308–318. https://doi.org/10.1016/j.scitotenv.2013.05.027

    Article  CAS  Google Scholar 

  • Wolf KL, Ahn C, Noe GB (2011) Development of soil properties and nitrogen cycling in created wetlands. Wetlands 31:699–712. https://doi.org/10.1007/s13157-011-0185-4

    Article  Google Scholar 

  • World Health Organization (2017) Technical information on development of fish consumption advice—FDA/EPA advice on what women and parents should know about eating fish. Available via FDA. www.fda.gov/Food/FoodborneIllnessContaminants/Metals/ucm531136.htm. Accessed 15 Mar 2017

  • Yuan Y (2012) Methylmercury: a potential environmental risk factor contributing to epileptogenesis. Neurotoxicology 33:119–126. https://doi.org/10.1016/j.neuro.2011.12.014

    Article  CAS  Google Scholar 

  • Zhao L, Qiu G, Anderson CWN, Meng B, Wang D, Shang L, Yan H, Feng X (2016) Mercury methylation in rice paddies and its possible controlling factors in the Hg mining area, Guizhou province, Southwest China. Environ Pollut 215:1–9. https://doi.org/10.1016/j.envpol.2016.05.001

    Article  CAS  Google Scholar 

  • Zhang T, Hsu-Kim H (2010) Photolytic degradation of methylmercury enhanced by binding to natural organic ligands. Nat Geosci 3:473–476. https://doi.org/10.1038/ngeo892

    Article  CAS  Google Scholar 

  • Zhang T, Kim B, Levard C, Reinsch BC, Lowry GV, Deshusses MA, Hsu-Kim H (2012) Methylation of mercury by bacteria exposed to dissolved, nanoparticulate, and microparticulate mercuric sulfides. Environ Sci Technol 46:6950–6958. https://doi.org/10.1021/es203181m

    Article  CAS  Google Scholar 

  • Zheng S, Gu B, Zhou Q, Li Y (2013) Variations of mercury in the inflow and outflow of a constructed treatment wetland in south Florida, USA. Ecol Eng 61:419–425. https://doi.org/10.1016/j.ecoleng.2013.10.015

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank David Kenth, an engineer at the City of Brampton, for professional information on the practical management of stormwater ponds in Southern Ontario. We would also like to thank Bob Clay, of the Friends of the Rouge Watershed in Toronto, Ontario, who provided information on the construction of habitat wetlands in the Rouge National Park. Funding for our work in Southern Ontario was provided by a Natural Sciences and Engineering Research Council of Canada Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel J. Strickman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Strickman, R.J., Mitchell, C.P.J. (2018). Methylmercury in Managed Wetlands. In: Nagabhatla, N., Metcalfe, C. (eds) Multifunctional Wetlands. Environmental Contamination Remediation and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-67416-2_7

Download citation

Publish with us

Policies and ethics