Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 426 Accesses

Abstract

Electromagnetism developed with two simultaneous gauge potentials naturally allows for a quantum field theory that includes magnetic monopoles and dyons. Exploiting this symmetry and SL(2,Z) duality, we can examine the spectrum of dyons (including the Witten effect), charge fractionalization, and the impact on electric dipole moments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a review of electromagnetic field tensors, see Chaps. 11.9 and 12 of [1]. For a review of the quantum theory, see Chap. 8 of [2], Chap. 5 of [3], and Sects. 54–68 of [4].

  2. 2.

    We define the dual field strength \(\widetilde{F}^{\mu \nu } \equiv \frac{1} {2}\varepsilon ^{\mu \nu \rho \sigma }F_{\rho \sigma }\), also occasionally referred to as F d.

  3. 3.

    The minimal charge g D = 2πℏe is called the Dirac magnetic charge.

  4. 4.

    Defining (ab) μν = a μ b ν a ν b μ , (a ⋅ G)ν = a μ G μν = −G νμ a μ = −(G ⋅ a)ν, and \(\left [a \cdot (b \wedge c)^{d}\right ]^{\nu } = a_{\mu }\varepsilon ^{\mu \nu \rho \sigma }b_{\rho }c_{\sigma }\) for four-vectors a, b, c and antisymmetric tensor G. Note (n ⋅ )(n ⋅ )−1(x) = δ (4)(x).

  5. 5.

    Since \(\widetilde{F} = {\ast}F\) is the Hodge dual, we must remember that ∗2 = (−1)k(nk)+q for a k-form in n-dimensional space with signature (p, q). 2-forms in 4D Minkowski space have ∗2 = −1.

  6. 6.

    Alternatively, the algebra may be generated by K, G, and ɛ, with the relations

    $$\displaystyle\begin{array}{rcl} K^{2} = K,\quad \varepsilon ^{2} = -G,\quad \varepsilon K\varepsilon = E,\quad K -\varepsilon K\varepsilon = G.& & {}\end{array}$$
    (1.3.33)
  7. 7.

    For \(\mathcal{N} = 4\) supersymmetric Yang-Mills \(SL(2, \mathbb{Z})\) is not just a duality, but an actual invariance of the spectrum.

  8. 8.

    Technically only the projective group \(PSL(2, \mathbb{Z}) = SL(2, \mathbb{Z})/\{ \pm 1\}\) acts on τ, but we (and much of the literature) will ignore this distinction.

  9. 9.

    We will use the shorthand F 2 = F μν F μν frequently. There are many relations between the helicity field strengths (1.5.9) and other combinations of field strengths catalogued in Appendix A.4.

  10. 10.

    A half-plane since the gauge coupling is always real and positive.

  11. 11.

    We may also be concerned about global U(1) X or additional SU(N) gauge anomalies for more complicated theories, which places additional restrictions on the allowed charges.

References

  1. J.D. Jackson, Classical electrodynamics. Am. J. Phys. 67 841 (1999)

    Article  ADS  MATH  Google Scholar 

  2. M.D. Schwartz, Quantum Field Theory and the Standard Model. (Cambridge University Press, Cambridge, 2014)

    Google Scholar 

  3. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley, Reading, 1995) 842 p.

    Google Scholar 

  4. M. Srednicki, Quantum Field Theory (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  5. J. Preskill, Magnetic monopoles. Ann. Rev. Nucl. Part. Sci. 34, 461 (1984)

    Article  ADS  Google Scholar 

  6. S.R. Coleman, The Magnetic Monopole Fifty Years Later (1982) HUTP-82-A032

    Google Scholar 

  7. P. Goddard, J. Nuyts, D.I. Olive, Gauge theories and magnetic charge. Nucl. Phys. B 125, 1 (1977); P. Goddard, D.I. Olive, New developments in the theory of magnetic monopoles. Rept. Prog. Phys. 41, 1357 (1978)

    Google Scholar 

  8. A. Rajantie, Introduction to magnetic monopoles. Contemp. Phys. 53, 195 (2012). hep-th/1204.3077

    Google Scholar 

  9. A.S. Goldhaber, Hairs on the unicorn: fine structure of monopoles and other solitons, in *Kingston 1997, Solitons* pp. 45–56. hep-th/9712190

    Google Scholar 

  10. P.A.M. Dirac, Quantized singularities in the electromagnetic field. Proc. Roy. Soc. Lond. A 133, 60 (1931); The theory of magnetic poles. Phys. Rev. 74, 817 (1948)

    Google Scholar 

  11. J.J. Thomson, On momentum in the electric field. Philos. Mag. 8, 331 (1904)

    Article  MATH  Google Scholar 

  12. H. Poincaré, Remarques sur une expérience de M. Birkeland. C. R. Acad. Sci. Paris 123, 530 (1896)

    Google Scholar 

  13. L.V. Laperashvili, H.B. Nielsen, Dirac relation and renormalization group equations for electric and magnetic fine structure constants. Mod. Phys. Lett. A 14, 2797 (1999). hep-th/9910101

    Google Scholar 

  14. B. Cabrera, First results from a superconductive detector for moving magnetic monopoles. Phys. Rev. Lett. 48, 1378 (1982); P.B. Price, E.K. Shirk, W.Z. Osborne, L.S. Pinsky, Evidence for detection of a moving magnetic monopole. Phys. Rev. Lett. 35, 487 (1975)

    Google Scholar 

  15. J.S. Schwinger, Magnetic charge and quantum field theory. Phys. Rev. 144, 1087 (1966); Sources and magnetic charge. Phys. Rev. 173, 1536 (1968); Magnetic charge and the charge quantization condition. Phys. Rev. D 12, 3105 (1975); A magnetic model of matter. Science 165, 757 (1969)

    Google Scholar 

  16. C.R. Hagen, Noncovariance of the Dirac monopole. Phys. Rev. 140 B804 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  17. D. Zwanziger, Local Lagrangian quantum field theory of electric and magnetic charges. Phys. Rev. D 3, 880 (1971); Quantum field theory of particles with both electric and magnetic charges. Phys. Rev. 176, 1489 (1968); R.A. Brandt, F. Neri, Remarks on Zwanziger’s local quantum field theory of electric and magnetic charge. Phys. Rev. D 18, 2080 (1978); R.A. Brandt, F. Neri, D. Zwanziger, Lorentz invariance of the quantum field theory of electric and magnetic charge. Phys. Rev. Lett. 40, 147 (1978); Lorentz invariance from classical particle paths in quantum field theory of electric and magnetic charge. Phys. Rev. D 19, 1153 (1979)

    Google Scholar 

  18. J.H. Schwarz, A. Sen, Duality symmetric actions. Nucl. Phys. B 411, 35 (1994). hep-th/9304154

    Google Scholar 

  19. R. Parthasarathy, Quantization in a nonlinear gauge and Feynman rules. J. Phys. A 21, 4593 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. W. Siegel, Fields. hep-th/9912205

    Google Scholar 

  21. W. Deans, Quantum field theory of dirac monopoles and the charge quantization condition. Nucl. Phys. B 197, 307 (1982)

    Article  ADS  Google Scholar 

  22. G. Ripka, Dual superconductor models of color confinement. in Lecture Notes in Physics, vol. 639. hep-ph/0310102

    Google Scholar 

  23. D.M. Lipkin, Existence of a new conservation law in electromagnetic theory. J. Math. Phys. 5(5), 696 (1964); K.Y. Bliokh, A.Y. Bekshaev, F. Nori, Dual electromagnetism: helicity, spin, momentum, and angular momentum. New J. Phys. 15, 033026 (2013). physics.optics/1208.4523

    Google Scholar 

  24. E. Tomboulis, G. Woo, Soliton quantization in gauge theories. Nucl. Phys. B 107, 221 (1976); J.L. Gervais, B. Sakita, S. Wadia, The surface term in gauge theories. Phys. Lett. B 63, 55 (1976).

    Google Scholar 

  25. E. Witten, Dyons of charge eθ∕2π. Phys. Lett. B 86, 283 (1979); Monopoles and four manifolds. Math. Res. Lett. 1, 769 (1994). hep-th/9411102 On S-duality in Abelian gauge theory. Sel. Math. 1, 383 (1995). hep-th/9505186; C. Vafa, E. Witten, A strong coupling test of S-duality. Nucl. Phys. B 431, 3 (1994). hep-th/9408074

    Google Scholar 

  26. C. Vafa, E. Witten, A strong coupling test of S-duality. Nucl. Phys. B 431, 3 (1994). hep-th/9408074

    Google Scholar 

  27. J.L. Cardy, E. Rabinovici, Phase structure of Z(p) models in the presence of a θ parameter. Nucl. Phys. B 205, 1 (1982); J.L. Cardy, Duality and the θ parameter in Abelian lattice models. Nucl. Phys. B 205, 17 (1982); A.D. Shapere, F. Wilczek, Selfdual models with θ terms. Nucl. Phys. B 320, 669 (1989)

    Google Scholar 

  28. E. Witten, On S-duality in Abelian gauge theory. Sel. Math. 1, 383 (1995). hep-th/9505186; E.P. Verlinde, Global aspects of electric - magnetic duality. Nucl. Phys. B 455, 211 (1995). hep-th/9506011

    Google Scholar 

  29. Y. Lozano, S-duality in gauge theories as a canonical transformation. Phys. Lett. B 364, 19 (1995). hep-th/9508021; A.A. Kehagias, A canonical approach to S-duality in Abelian gauge theory. hep-th/9508159

    Google Scholar 

  30. N. Seiberg, Electric - magnetic duality in supersymmetric nonAbelian gauge theories. Nucl. Phys. B 435, 129 (1995). hep-th/9411149; N. Seiberg, The power of duality: exact results in 4-D SUSY field theory. Int. J. Mod. Phys. A 16, 4365 (2001), Prog. Theor. Phys. Suppl. 123, 337 (1996). hep-th/9506077

    Google Scholar 

  31. N. Seiberg, E. Witten, Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory. Nucl. Phys. B 426, 19 (1994). [Erratum-ibid. B 430, 485 (1994)]. hep-th/9407087, Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD. Nucl. Phys. B 431, 484 (1994). hep-th/9408099; R.b. Zhang, B.L. Wang, A.L. Carey, J.G. McCarthy, Seiberg-Witten monopoles in three-dimensions. Lett. Math. Phys. 39, 213 (1997). hep-th/9504005

    Google Scholar 

  32. C. Csaki, Y. Shirman, J. Terning, Anomaly constraints on monopoles and dyons. Phys. Rev. D 81, 125028 (2010). hep-th/1003.0448

    Google Scholar 

  33. L. Silberstein, Elektromagnetische Grundgleichungen in bivektorieller Behandlung. Ann. Phys. 327, 579 (1907)

    Article  MATH  Google Scholar 

  34. A. Zee, Quantum Field Theory in a Nutshell, 2nd edn. (Princeton University Press, Princeton, 2010) p. 486

    MATH  Google Scholar 

  35. H. Elvang, Y.t. Huang, Scattering amplitudes. hep-th/1308.1697

    Google Scholar 

  36. R. Boels, K.J. Larsen, N.A. Obers, M. Vonk, MHV, CSW and BCFW: field theory structures in string theory amplitudes. J. High Energy Phys. 0811, 015 (2008). hep-th/0808.2598

    Google Scholar 

  37. Wikimedia Commons, Modular Group-Fundamental Domain. en Wikipedia (2004)

    Google Scholar 

  38. P.C. Argyres, M.R. Douglas, New phenomena in SU(3) supersymmetric gauge theory. Nucl. Phys. B 448, 93 (1995). hep-th/9505062

    Google Scholar 

  39. A.J. Niemi, M.B. Paranjape, G.W. Semenoff, On the electric charge of the magnetic monopole. Phys. Rev. Lett. 53, 515 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  40. C.G. Callan, Jr., Dyon-Fermion dynamics. Phys. Rev. D 26, 2058 (1982)

    Article  ADS  Google Scholar 

  41. R.J. Crewther, P. Di Vecchia, G. Veneziano, E. Witten, Chiral estimate of the electric dipole moment of the neutron in quantum chromodynamics. Phys. Lett. B 88, 123 (1979); Erratum: [Phys. Lett. B 91, 487 (1980)]

    Google Scholar 

  42. J. Nuyts, Is CP-invariance violation caused by an SU(3) singlet? Phys. Rev. Lett. 26, 1604 (1971); Erratum: [Phys. Rev. Lett. 27, 361 (1971)]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Colwell, K.M.M. (2017). Electromagnetic Duality. In: Dualities, Helicity Amplitudes, and Little Conformal Symmetry. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-67392-9_1

Download citation

Publish with us

Policies and ethics