Skip to main content

Novel Effective Connectivity Network Inference for MCI Identification

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10541))

Included in the following conference series:

Abstract

Inferring effective brain connectivity network is a challenging task owing to perplexing noise effects, the curse of dimensionality, and inter-subject variability. However, most existing network inference methods are based on correlation analysis and consider the datum points individually, revealing limited information of the neuron interactions and ignoring the relations amongst the derivatives of the data. Hence, we proposed a novel ultra group-constrained sparse linear regression model for effective connectivity inference. This model utilizes not only the discrepancy between observed signals and the model prediction, but also the discrepancy between the associated weak derivatives of the observed and the model signals for a more accurate effective connectivity inference. What’s more, a group constraint is applied to minimize the inter-subject variability and the proposed modeling was validated on a mild cognitive impairment dataset with superior results achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sporns, O.: Towards network substrates of brain disorders. Brain 137, 2117–2118 (2014). doi:10.1093/brain/awu148

    Article  Google Scholar 

  2. Lee, H.L.D., Kang, H., Kim, B.N., Chung, M.K.: Sparse brain network recovery under compressed sensing. IEEE Trans. Med. Imaging 30(5), 1154–1165 (2011)

    Article  Google Scholar 

  3. Wee, C.Y., Yap, P.T., Zhang, D., Wang, L., Shen, D.: Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification. Brain Struct. Funct. 219(2), 641–656 (2014). doi:10.1007/s00429-013-0524-8

    Article  Google Scholar 

  4. Li, Y., Cui, W.G., Guo, Y.Z., Huang, T., Yang, X.F., Wei, H.L.: Time-varying system identification using an ultra-orthogonal forward regression and multiwavelet basis functions with applications to EEG. IEEE Trans. Neural Netw. Learn. Syst. PP(99), 1–13 (2017). doi:10.1109/TNNLS.2017.2709910

    Google Scholar 

  5. Li, Y., Wee, C.Y., Jie, B., Peng, Z.W., Shen, D.G.: Sparse multivariate autoregressive modeling for mild cognitive impairment classification. Neuroinformatics 12(3), 455–469 (2014). doi:10.1007/s12021-014-9221-x

    Article  Google Scholar 

  6. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010). doi:10.1016/j.neuroimage.2009.10.003

    Article  Google Scholar 

  7. Menze, B.H., Kelm, B.M., Masuch, R., Himmelreich, U., Bachert, P., Petrich, W., Hamprecht, F.A.: A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinformatics 10 (2009)

    Google Scholar 

  8. Nir, T.M., Jahanshad, N., Villalon-Reina, J.E., Toga, A.W., Jack, C.R., Weiner, M.W., Thompson, P.M., Alzheimer’s Disease Neuroimaging Initiative (ADNI): Effectiveness of regional DTI measures in distinguishing Alzheimer’s disease, MCI, and normal aging. Neuroimage Clin 3, 180–195 (2013). doi:10.1016/j.nicl.2013.07.006

    Article  Google Scholar 

  9. Salvatore, C., Cerasa, A., Battista, P., Gilardi, M.C., Quattrone, A., Castiglioni, I., Alzheimer’s Disease Neuroimaging Initiative: Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer’s disease: a machine learning approach. Front. Neurosci. 9, 307 (2015). doi:10.3389/Fnins.2015.00307

    Article  Google Scholar 

  10. Jie, B., Zhang, D.Q., Gao, W., Wang, Q., Wee, C.Y., Shen, D.G.: Integration of network topological and connectivity properties for neuroimaging classification. IEEE Trans. Bio Med. Eng. 61(2), 576–589 (2014). doi:10.1109/Tbme.2013.2284195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Li, Y. et al. (2017). Novel Effective Connectivity Network Inference for MCI Identification. In: Wang, Q., Shi, Y., Suk, HI., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2017. Lecture Notes in Computer Science(), vol 10541. Springer, Cham. https://doi.org/10.1007/978-3-319-67389-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67389-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67388-2

  • Online ISBN: 978-3-319-67389-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics