Skip to main content

3D Convolutional Neural Networks with Graph Refinement for Airway Segmentation Using Incomplete Data Labels

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10541))

Included in the following conference series:

Abstract

Intrathoracic airway segmentation from computed tomography images is a frequent prerequisite for further quantitative lung analyses. Due to low contrast and noise, especially at peripheral branches, it is often challenging for automatic methods to strike a balance between extracting deeper airway branches and avoiding leakage to the surrounding parenchyma. Meanwhile, manual annotations are extremely time consuming for the airway tree, which inhibits automated methods requiring training data. To address this, we introduce a 3D deep learning-based workflow able to produce high-quality airway segmentation from incompletely labeled training data generated without manual intervention. We first train a 3D fully convolutional network (FCN) based on the fact that 3D spatial information is crucial for small highly anisotropic tubular structures such as airways. For training the 3D FCN, we develop a domain-specific sampling scheme that strategically uses incomplete labels from a previous highly specific segmentation method, aiming to retain similar specificity while boosting sensitivity. Finally, to address local discontinuities of the coarse 3D FCN output, we apply a graph-based refinement incorporating fuzzy connectedness segmentation and robust curve skeletonization. Evaluations on the EXACT’09 and LTRC datasets demonstrate considerable improvements in airway extraction while maintaining reasonable leakage compared with a state-of-art method and the dataset reference standard.

Z. Xu—This work is supported by the Intramural Research Program of the National Institutes of Health, Clinical Center and the National Institute of Allergy and Infectious Diseases. We also thank Nvidia for the donation of a Tesla K40 GPU.

The rights of this work are transferred to the extent transferable according to title 17 § 105 U.S.C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuwano, K., Bosken, C.H., Paré, P.D., Bai, T.R., Wiggs, B.R., Hogg, J.C.: Small airways dimensions in asthma and in chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 148(5), 1220–1225 (1993)

    Article  Google Scholar 

  2. Tschirren, J., Yavarna, T., Reinhardt, J.M.: Airway segmentation framework for clinical environments. In: Second International Workshop on Pulmonary Image Analysis, London, UK, pp. 227–238 (2009)

    Google Scholar 

  3. Van Rikxoort, E.M., Baggerman, W., van Ginneken, B.: Automatic segmentation of the airway tree from thoracic CT scans using a multi-threshold approach. In: Second International Workshop on Pulmonary Image Analysis, pp. 341–349 (2009)

    Google Scholar 

  4. Xu, Z., Bagci, U., Foster, B., Mansoor, A., Udupa, J.K., Mollura, D.J.: A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT. Med. Imag. Anal. 24(1), 1–17 (2015)

    Article  Google Scholar 

  5. Lo, P., Sporring, J., Ashraf, H., Pedersen, J.J., de Bruijne, M.: Vessel-guided airway tree segmentation: a voxel classification approach. Med. Imag. Anal. 14(4), 527–538 (2010)

    Article  Google Scholar 

  6. Charbonnier, J.P., van Rikxoort, E.M., Setio, A.A., Schaefer-Prokop, C.M., van Ginneken, B., Ciompi, F.: Improving airway segmentation in computed tomography using leak detection with convolutional networks. Med. Imag. Anal. 36, 52–60 (2017)

    Article  Google Scholar 

  7. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, June 2016

    Google Scholar 

  9. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  10. Merkow, J., Marsden, A., Kriegman, D., Tu, Z.: Dense volume-to-volume vascular boundary detection. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 371–379. Springer, Cham (2016). doi:10.1007/978-3-319-46726-9_43

    Chapter  Google Scholar 

  11. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  12. Jin, D., Iyer, K.S., Chen, C., Hoffman, E.A., Saha, P.K.: A robust and efficient curve skeletonization algorithm for tree-like objects using minimum cost paths. Pattern Recogn. Lett. 76, 32–40 (2016)

    Article  Google Scholar 

  13. Lo, P., Van Ginneken, B., Reinhardt, J.M., et al.: Extraction of airways from CT (EXACT’09). IEEE Trans. Med. Imaging 31(11), 2093–2107 (2012)

    Article  Google Scholar 

  14. Karwoski, R.A., Bartholmai, B., Zavaletta, V.A., Holmes, D., Robb, R.A.: Processing of CT images for analysis of diffuse lung disease in the lung tissue research consortium. In: Proceedings of SPIE 6916, Medical Imaging 2008: Physiology, Function, and Structure from Medical Images (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyue Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG (outside the USA)

About this paper

Cite this paper

Jin, D., Xu, Z., Harrison, A.P., George, K., Mollura, D.J. (2017). 3D Convolutional Neural Networks with Graph Refinement for Airway Segmentation Using Incomplete Data Labels. In: Wang, Q., Shi, Y., Suk, HI., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2017. Lecture Notes in Computer Science(), vol 10541. Springer, Cham. https://doi.org/10.1007/978-3-319-67389-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67389-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67388-2

  • Online ISBN: 978-3-319-67389-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics