Skip to main content

Finding Dense Supervoxel Correspondence of Cone-Beam Computed Tomography Images

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10541))

Included in the following conference series:

Abstract

Dense correspondence establishment of cone-beam computed tomography (CBCT) images is a crucial step for attribute transfers and morphological variation assessments in clinical orthodontics. However, the registration by the traditional large-scale nonlinear optimization is time-consuming for the craniofacial CBCT images. The supervised random forest is known for its fast online performance, thought the limited training data impair the generalization capacity. In this paper, we propose an unsupervised random-forest-based approach for the supervoxel-wise correspondence of CBCT images. In particular, we present a theoretical complexity analysis with a data-dependent learning guarantee for the clustering hypotheses of the unsupervised random forest. A novel tree-pruning algorithm is proposed to refine the forest by removing the local trivial and inconsistent leaf nodes, where the learning bound serves as guidance for an optimal selection of tree structures. The proposed method has been tested on the label propagation of clinically-captured CBCT images. Experiments demonstrate the proposed method yields performance improvements over variants of both supervised and unsupervised random-forest-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  3. Coupé, P., Manjón, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. NeuroImage 54(2), 940–954 (2011)

    Article  Google Scholar 

  4. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests for classification, regression, density estimation, manifold learning and semi-supervised learning. Microsoft Research Cambridge, Technical report MSRTR-2011-114, vol. 5, no. 6, p. 12 (2011)

    Google Scholar 

  5. Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression forests for efficient anatomy detection and localization in CT studies. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds.) MCV 2010. LNCS, vol. 6533, pp. 106–117. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18421-5_11

    Chapter  Google Scholar 

  6. Denil, M., Matheson, D., De Freitas, N.: Narrowing the gap: random forests in theory and in practice. In: ICML, pp. 665–673 (2014)

    Google Scholar 

  7. DeSalvo, G., Mohri, M.: Random composite forests. In: AAAI, pp. 1540–1546 (2016)

    Google Scholar 

  8. Kanavati, F., Tong, T., Misawa, K., Fujiwara, M., Mori, K., Rueckert, D., Glocker, B.: Supervoxel classification forests for estimating pairwise image correspondences. Pattern Recogn. 63, 561–569 (2017)

    Article  Google Scholar 

  9. Pei, Y., Kim, T.K., Zha, H.: Unsupervised random forest manifold alignment for lipreading. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 129–136 (2013)

    Google Scholar 

  10. Wang, L., et al.: Automated segmentation of CBCT image using spiral CT atlases and convex optimization. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 251–258. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40760-4_32

    Chapter  Google Scholar 

  11. Zikic, D., Glocker, B., Criminisi, A.: Encoding atlases by randomized classification forests for efficient multi-atlas label propagation. Med. Image Anal. 18(8), 1262–1273 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China under Grant 61272342.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuru Pei .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 39 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pei, Y. et al. (2017). Finding Dense Supervoxel Correspondence of Cone-Beam Computed Tomography Images. In: Wang, Q., Shi, Y., Suk, HI., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2017. Lecture Notes in Computer Science(), vol 10541. Springer, Cham. https://doi.org/10.1007/978-3-319-67389-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67389-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67388-2

  • Online ISBN: 978-3-319-67389-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics