Skip to main content

Analysis of T-Cell Immune Responses as Measured by Intracellular Cytokine Staining with Application to Vaccine Clinical Trials

  • Conference paper
  • First Online:
Pharmaceutical Statistics (MBSW 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 218))

Included in the following conference series:

  • 904 Accesses

Abstract

Recent advances in single-cell technologies, in particular intracellular cytokine staining (ICS), have enabled multidimensional functional measurements of naturally occurring or vaccine-induced T-cell responses in clinical studies. Analysis of such increasingly multidimensional datasets presents a great challenge to statisticians. Currently, multidimensional functional cell measures are largely analyzed, either by univariate analysis of all combinations of functions individually, or by summarizing a few particular groups of functions separately. Such simple analyses do not reflect comprehensively the polyfunctional profile of the T-cell responses, nor do they allow more sophisticated statistical analysis and inference. In this paper, we introduce a new approach to statistical inference for multidimensional ICS data. We propose to reduce the dimensionality by using a weighted sum, followed by computing the minimum and maximum of the test statistic over all eligible assignments of weights which satisfy the underlying partial ordering of the data. The computation technique is presented. Statistical inference is then based on the minimum and maximum of the test statistic. We illustrate, through an example, that the technique can be useful in reducing the complexity of the multidimensional response data and providing insightful reporting of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Rosa, S.C., Lu, F.X., Yu, J., Perfetto, S.P., Falloon, J., Moser, S., Evans, T.G., Koup, R., Miller, C.J., Roederer, M.: Vaccination in humans generates broad T cell cytokine responses. J. Immunol. 173(9), 5372–5380 (2004)

    Article  Google Scholar 

  2. Rodrigue-Gervais, I.G., Rigsby, H., Jouan, L., Sauv, D., Saly, R.P., Willems, B., Lamarre, D.: Dendritic cell inhibition is connected to exhaustion of CD8+ T cell polyfunctionality during chronic hepatitis C virus infection. J. Immunol. 184(6), 3134–3144 (2010)

    Article  Google Scholar 

  3. Ciuffreda, D., Comte, D., Cavassini, M., Giostra, E., Bhler, L., Perruchoud, M., Heim, M.H., Battegay, M., Genn, D., Mulhaupt, B., Malinverni, R.: Polyfunctional HCVspecific Tcell responses are associated with effective control of HCV replication. Eur. J. Immunol. 38(10), 2665–2677 (2008)

    Article  Google Scholar 

  4. Precopio, M.L., Betts, M.R., Parrino, J., Price, D.A., Gostick, E., Ambrozak, D.R., Asher, T.E., Douek, D.C., Harari, A., Pantaleo, G., Bailer, R.: Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8+ T cell responses. J. Exp. Med. 204(6), 1405–1416 (2007)

    Article  Google Scholar 

  5. Darrah, P.A., Patel, D.T., De Luca, P.M., Lindsay, R.W., Davey, D.F., Flynn, B.J., Hoff, S.T., Andersen, P., Reed, S.G., Morris, S.L., Roederer, M.: Multifunctional T H 1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat. Med. 13(7), 843 (2007)

    Article  Google Scholar 

  6. Roederer, M., Nozzi, J.L., Nason, M.C.: SPICE: exploration and analysis of postcytometric complex multivariate datasets. Cytometry Part A 79(2), 167–174 (2011)

    Article  Google Scholar 

  7. Morrison, D.F.: Multivariate Statistical Methods. McGraw-Hill, New York (1976)

    MATH  Google Scholar 

  8. Nason, M.: Patterns of immune response to a vaccine or virus as measured by intracellular cytokine staining in flow cytometry: hypothesis generation and comparison of groups. J. Biopharm. Stat. 16, 483–498 (2006)

    Article  MathSciNet  Google Scholar 

  9. Larsen, M., Sauce, D., Arnaud, L., Fastenackels, S., Appay, V., Gorochov, G.: Evaluating cellular polyfunctionality with a novel polyfunctionality index. PLoS One 7(7), e42403 (2012)

    Article  Google Scholar 

  10. Finak, G., McDavid, A., Chattopadhyay, P., Dominguez, M., De Rosa, S., Roederer, M., Gottardo, R.: Mixture models for single-cell assays with applications to vaccine studies. Biostatistics 15(1), 87–101 (2013)

    Article  Google Scholar 

  11. Lin, L., Finak, G., Ushey, K., Seshadri, C., Hawn, T.R., Frahm, N., Scriba, T.J., Mahomed, H., Hanekom, W., Bart, P.A., Pantaleo, G.: COMPASS identifies T-cell subsets correlated with clinical outcomes. Nat. Biotechnol. 33(6), 610 (2015)

    Article  Google Scholar 

  12. Agresti, A.: Analysis of Ordinal Cathegorical Data. Willey, New York (1984)

    MATH  Google Scholar 

  13. Kimeldorf, G., Sampson, A.R., Whitaker, L.R.: Min and max scorings for two-sample ordinal data. J. Am. Stat. Assoc. 87(417), 241–247 (1992)

    Article  MathSciNet  Google Scholar 

  14. Sampson, A.R., Singh, H.: Min and max scorings for two sample partially ordered categorical data. J. Stat. Plan. Inference 107(1–2), 219–236 (2002)

    Article  MathSciNet  Google Scholar 

  15. Landsman, Z.: Minimization of the root of a quadratic functional under an affine equality constraint. J. Comput. Appl. Math. 216(2), 319–327 (2008)

    Article  MathSciNet  Google Scholar 

  16. Avriel, M., Diewert, W.E., Schaible, S., Zang, I.: Generalized Concavity. Plenum Press, New York (1988)

    Book  Google Scholar 

  17. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, New York (2013)

    MATH  Google Scholar 

  18. Haynes, B.F., Gilbert, P.B., McElrath, M.J., Zolla-Pazner, S., Tomaras, G.D., Alam, S.M., Evans, D.T., Montefiori, D.C., Karnasuta, C., Sutthent, R., Liao, H.X.: Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N. Engl. J. Med. 366(14), 1275–1286 (2012)

    Article  Google Scholar 

  19. Rerks-Ngarm, S., Pitisuttithum, P., Nitayaphan, S., Kaewkungwal, J., Chiu, J., Paris, R., Premsri, N., Namwat, C., de Souza, M., Adams, E., Benenson, M.: Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361(23), 2209–2220 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunzhi Lin .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Theorem 2.1. Let population X data be stochastically greater with respect to the partial ordering \(\preceq \) than population Y data. We need to show t(\(\alpha \)) \(\ge \) 0 for all eligible weights consistent with \(\preceq \).

Given any \(\alpha \) consistent with the partial ordering \(\preceq \), let \(\alpha _{(1)} \ge \alpha _{(2)} \ge ... \ge \alpha _{(M)}\) denote them placed in descending order. The M combinations corresponding to this order can be written as \(\{C_{(1)}, C_{(2)}, ..., C_{(M)}\}\) and the corresponding data as \(\bar{x}^* = (x_{\cdot (1)}, ..., x_{\cdot (M)})^T\) and \(\bar{y}^*= (y_{\cdot (1)}, ..., y_{\cdot (M)})^T\).

Denote a sequence of sets \(\{U_{(k)}\}\) such that \(U_{(k)} = \{C_{(1)}, C_{(2)}, ..., C_{(k)}\}\), \(k = 1, 2, ..., M\). It is easy to see that each \(U_{(k)}\) is an upper set. Then by Definition 2.2 we have \(\sum _{j=1}^k \bar{x}_{\cdot (j)} \ge \sum _{j=1}^k \bar{y}_{\cdot (j)}\), \(k = 1, 2, ..., M\). Let \(\Delta _{(j)} = \bar{x}_{\cdot (j)} - \bar{y}_{\cdot (j)}\), we have \(\sum _{j=1}^k \Delta _{(j)} \ge 0\), \(k = 1, 2, ..., M\).

Given \(\alpha _{(1)} \ge \alpha _{(2)} \ge ... \ge \alpha _{(M)}\), let us write \(\alpha _{(1)} = \alpha _{(2)} + \delta _{(1)}\), \(\alpha _{(2)} = \alpha _{(3)} + \delta _{(2)}\), ..., \(\alpha _{(M-1)} = \alpha _{(M)} + \delta _{(M-1)}\), with \(\delta _{(1)}, ..., \delta _{(M-1)} \ge 0\). That is, \(\alpha _{(j)} = \alpha _{(M)} + \sum _{r=j}^{M-1} \delta _{(r)}\), \(j = 1, 2, ..., M\). It follows that

$$\begin{aligned} \begin{aligned} \alpha ^T (\bar{x} - \bar{y})&= \sum _{j=1}^M \alpha _{(j)} (\bar{x}_{\cdot (j)} - \bar{y}_{\cdot (j)}) \\&= \sum _{j=1}^M \{ \alpha _{(M)} + \sum _{r=j}^{M-1} \delta _{(r)} \} \Delta _{(j)} \\&= \alpha _{(M)}\sum _{j=1}^M \Delta _{(j)} + \sum _{j=1}^{M-1} \delta _{(j)} \sum _{r=1}^j \Delta _{(r)} \ge 0 ,\\ \end{aligned} \end{aligned}$$
(6)

where the inequality follows from the fact that \(\alpha _{(k)} \ge 0\), \(\delta _{(k)} \ge 0\), and \(\sum _{j=1}^k \Delta _{(j)} \ge 0\), for \(k = 1, 2, ..., M\). Hence we have proven Theorem 2.1.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, Y., Han, C. (2019). Analysis of T-Cell Immune Responses as Measured by Intracellular Cytokine Staining with Application to Vaccine Clinical Trials. In: Liu, R., Tsong, Y. (eds) Pharmaceutical Statistics. MBSW 2016. Springer Proceedings in Mathematics & Statistics, vol 218. Springer, Cham. https://doi.org/10.1007/978-3-319-67386-8_18

Download citation

Publish with us

Policies and ethics