Analysis of T-Cell Immune Responses as Measured by Intracellular Cytokine Staining with Application to Vaccine Clinical Trials

  • Yunzhi LinEmail author
  • Cong Han
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 218)


Recent advances in single-cell technologies, in particular intracellular cytokine staining (ICS), have enabled multidimensional functional measurements of naturally occurring or vaccine-induced T-cell responses in clinical studies. Analysis of such increasingly multidimensional datasets presents a great challenge to statisticians. Currently, multidimensional functional cell measures are largely analyzed, either by univariate analysis of all combinations of functions individually, or by summarizing a few particular groups of functions separately. Such simple analyses do not reflect comprehensively the polyfunctional profile of the T-cell responses, nor do they allow more sophisticated statistical analysis and inference. In this paper, we introduce a new approach to statistical inference for multidimensional ICS data. We propose to reduce the dimensionality by using a weighted sum, followed by computing the minimum and maximum of the test statistic over all eligible assignments of weights which satisfy the underlying partial ordering of the data. The computation technique is presented. Statistical inference is then based on the minimum and maximum of the test statistic. We illustrate, through an example, that the technique can be useful in reducing the complexity of the multidimensional response data and providing insightful reporting of the results.


Cell-mediated immunity Intracellular cytokine staining Vaccine Clinical trials Partial ordering Min max statistics Stochastic ordering 


  1. 1.
    De Rosa, S.C., Lu, F.X., Yu, J., Perfetto, S.P., Falloon, J., Moser, S., Evans, T.G., Koup, R., Miller, C.J., Roederer, M.: Vaccination in humans generates broad T cell cytokine responses. J. Immunol. 173(9), 5372–5380 (2004)CrossRefGoogle Scholar
  2. 2.
    Rodrigue-Gervais, I.G., Rigsby, H., Jouan, L., Sauv, D., Saly, R.P., Willems, B., Lamarre, D.: Dendritic cell inhibition is connected to exhaustion of CD8+ T cell polyfunctionality during chronic hepatitis C virus infection. J. Immunol. 184(6), 3134–3144 (2010)CrossRefGoogle Scholar
  3. 3.
    Ciuffreda, D., Comte, D., Cavassini, M., Giostra, E., Bhler, L., Perruchoud, M., Heim, M.H., Battegay, M., Genn, D., Mulhaupt, B., Malinverni, R.: Polyfunctional HCVspecific Tcell responses are associated with effective control of HCV replication. Eur. J. Immunol. 38(10), 2665–2677 (2008)CrossRefGoogle Scholar
  4. 4.
    Precopio, M.L., Betts, M.R., Parrino, J., Price, D.A., Gostick, E., Ambrozak, D.R., Asher, T.E., Douek, D.C., Harari, A., Pantaleo, G., Bailer, R.: Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8+ T cell responses. J. Exp. Med. 204(6), 1405–1416 (2007)CrossRefGoogle Scholar
  5. 5.
    Darrah, P.A., Patel, D.T., De Luca, P.M., Lindsay, R.W., Davey, D.F., Flynn, B.J., Hoff, S.T., Andersen, P., Reed, S.G., Morris, S.L., Roederer, M.: Multifunctional T H 1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat. Med. 13(7), 843 (2007)CrossRefGoogle Scholar
  6. 6.
    Roederer, M., Nozzi, J.L., Nason, M.C.: SPICE: exploration and analysis of postcytometric complex multivariate datasets. Cytometry Part A 79(2), 167–174 (2011)CrossRefGoogle Scholar
  7. 7.
    Morrison, D.F.: Multivariate Statistical Methods. McGraw-Hill, New York (1976)zbMATHGoogle Scholar
  8. 8.
    Nason, M.: Patterns of immune response to a vaccine or virus as measured by intracellular cytokine staining in flow cytometry: hypothesis generation and comparison of groups. J. Biopharm. Stat. 16, 483–498 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Larsen, M., Sauce, D., Arnaud, L., Fastenackels, S., Appay, V., Gorochov, G.: Evaluating cellular polyfunctionality with a novel polyfunctionality index. PLoS One 7(7), e42403 (2012)CrossRefGoogle Scholar
  10. 10.
    Finak, G., McDavid, A., Chattopadhyay, P., Dominguez, M., De Rosa, S., Roederer, M., Gottardo, R.: Mixture models for single-cell assays with applications to vaccine studies. Biostatistics 15(1), 87–101 (2013)CrossRefGoogle Scholar
  11. 11.
    Lin, L., Finak, G., Ushey, K., Seshadri, C., Hawn, T.R., Frahm, N., Scriba, T.J., Mahomed, H., Hanekom, W., Bart, P.A., Pantaleo, G.: COMPASS identifies T-cell subsets correlated with clinical outcomes. Nat. Biotechnol. 33(6), 610 (2015)CrossRefGoogle Scholar
  12. 12.
    Agresti, A.: Analysis of Ordinal Cathegorical Data. Willey, New York (1984)zbMATHGoogle Scholar
  13. 13.
    Kimeldorf, G., Sampson, A.R., Whitaker, L.R.: Min and max scorings for two-sample ordinal data. J. Am. Stat. Assoc. 87(417), 241–247 (1992)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Sampson, A.R., Singh, H.: Min and max scorings for two sample partially ordered categorical data. J. Stat. Plan. Inference 107(1–2), 219–236 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Landsman, Z.: Minimization of the root of a quadratic functional under an affine equality constraint. J. Comput. Appl. Math. 216(2), 319–327 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Avriel, M., Diewert, W.E., Schaible, S., Zang, I.: Generalized Concavity. Plenum Press, New York (1988)CrossRefGoogle Scholar
  17. 17.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, New York (2013)zbMATHGoogle Scholar
  18. 18.
    Haynes, B.F., Gilbert, P.B., McElrath, M.J., Zolla-Pazner, S., Tomaras, G.D., Alam, S.M., Evans, D.T., Montefiori, D.C., Karnasuta, C., Sutthent, R., Liao, H.X.: Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N. Engl. J. Med. 366(14), 1275–1286 (2012)CrossRefGoogle Scholar
  19. 19.
    Rerks-Ngarm, S., Pitisuttithum, P., Nitayaphan, S., Kaewkungwal, J., Chiu, J., Paris, R., Premsri, N., Namwat, C., de Souza, M., Adams, E., Benenson, M.: Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361(23), 2209–2220 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Takeda Pharmaceutical Company LimitedCambridgeUSA

Personalised recommendations