Skip to main content

Fast and Power-Efficient Embedded Software Implementation of Digital Image Stabilization for Low-Cost Autonomous Boats

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 5))

Abstract

The use of autonomous surface vehicles (ASVs) is an efficient alternative to the traditional manual or static sensor network sampling for large-scale monitoring of marine and aquatic environments. However, navigating natural and narrow waterways is challenging for low-cost ASVs due to possible obstacles and limited precision global positioning system (GPS) data. Visual information coming from a camera can be used for collision avoidance, and digital image stabilization is a fundamental step for achieving this capability. This work presents an implementation of an image stabilization algorithm for a heterogeneous low-power board (i.e., NVIDIA Jetson TX1). In particular, the paper shows how such an embedded vision application has been configured to best exploit the CPU and the GPU processing elements of the board in order to obtain both computation performance and energy efficiency. We present qualitative and quantitative experiments carried out on two different environments for embedded vision software development (i.e., OpenCV and OpenVX), using real data to find a suitable solution and to demonstrate its effectiveness. The data used in this study is publicly available.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    senseplatypus.com.

  2. 2.

    www.intcatch.eu.

  3. 3.

    opencv.org.

  4. 4.

    www.khronos.org/openvx.

  5. 5.

    http://www.arl.nus.edu.sg/twiki6/bin/view/ARL/Swan.

  6. 6.

    www.hrwallingford.com/expertise/arc-boat.

  7. 7.

    http://profs.scienze.univr.it/bloisi/intcatchai/intcatchai.html.

  8. 8.

    http://profs.sci.univr.it/bloisi/intcatchvisiondb/intcatchvisiondb.html.

References

  1. Bedard, D., Lim, M.Y., Fowler, R., Porterfield, A.: Powermon: fine-grained and integrated power monitoring for commodity computer systems. In: IEEE SoutheastCon, pp. 479–484 (2010)

    Google Scholar 

  2. Bloisi, D., Pennisi, A., Iocchi, L.: Background modeling in the maritime domain. Mach. Vis. Appl. 25(5), 1257–1269 (2014)

    Article  Google Scholar 

  3. Codiga, D.L.: A marine autonomous surface craft for long-duration, spatially explicit, multidisciplinary water column sampling in coastal and estuarine systems. J. Atmos. Ocean. Technol. 32(3), 627–641 (2015)

    Article  Google Scholar 

  4. Dekkiche, D., Vincke, B., Merigot, A.: Investigation and performance analysis of OpenVX optimizations on computer vision applications. In: International Conference on Control, Automation, Robotics and Vision, pp. 1–6 (2016)

    Google Scholar 

  5. Dunbabin, M., Grinham, A.: Quantifying spatiotemporal greenhouse gas emissions using autonomous surface vehicles. J. Field Robot. 34(1), 151–169 (2017)

    Article  Google Scholar 

  6. El-Gaaly, T., Tomaszewski, C., Valada, A., Velagapudi, P., Kannan, B., Scerri, P.: Visual obstacle avoidance for autonomous watercraft using smartphones. In: Autonomous Robots and Multirobot Systems workshop (2013)

    Google Scholar 

  7. Elliott, G.A., Yang, K., Anderson, J.H.: Supporting real-time computer vision workloads using OpenVX on Multicore+GPU platforms. In: Real-Time Systems Symposium, pp. 273–284 (2015)

    Google Scholar 

  8. Fefilatyev, S., Goldgof, D., Lembke, C.: Tracking ships from fast moving camera through image registration. In: International Conference on Pattern Recognition, pp. 3500–3503 (2010)

    Google Scholar 

  9. Ferri, G., Manzi, A., Fornai, F., Ciuchi, F., Laschi, C.: The HydroNet ASV, a small-sized autonomous catamaran for real-time monitoring of water quality: from design to missions at sea. IEEE J. Ocean. Eng. 40(3), 710–726 (2015)

    Article  Google Scholar 

  10. Giordano, F., Mattei, G., Parente, C., Peluso, F., Santamaria, R.: Integrating sensors into a marine drone for bathymetric 3D surveys in shallow waters. Sensors 16(1) (2016)

    Google Scholar 

  11. Huntsberger, T., Aghazarian, H., Howard, A., Trotz, D.C.: Stereo vision-based navigation for autonomous surface vessels. J. Field Robot. 28(1), 3–18 (2011)

    Article  Google Scholar 

  12. Kalwa, J., Carreiro-Silva, M., Tempera, F., Fontes, J., Santos, R.S., Fabri, M.C., Brignone, L., Ridao, P., Birk, A., Glotzbach, T., Caccia, M., Alves, J., Pascoal, A.: The morph concept and its application in marine research. In: MTS/IEEE OCEANS, pp. 1–8 (2013)

    Google Scholar 

  13. Pisa, S., Bernardi, P., Cavagnaro, M., Pittella, E., Piuzzi, E.: Monitoring of cardio-pulmonary activity with UWB radar: A circuital model. In: Asia-Pacific Symposium on Electromagnetic Compatibility and 19th Int. Zurich Symposium on Electromagnetic Compatibility, pp. 224–227 (2008)

    Google Scholar 

  14. Rankin, A., Matthies, L.: Daytime water detection based on color variation. In: International Conference on Intelligent Robots and Systems, pp. 215–221 (2010)

    Google Scholar 

  15. Santana, P., Mendona, R., Barata, J.: Water detection with segmentation guided dynamic texture recognition. In: International Conference on Robotics and Biomimetics, pp. 1836–1841 (2012)

    Google Scholar 

  16. Scerri, P., Kannan, B., Velagapudi, P., Macarthur, K., Stone, P., Taylor, M., Dolan, J., Farinelli, A., Chapman, A., Dias, B., Kantor, G.: Flood Disaster Mitigation: A Real-World Challenge Problem for Multi-agent Unmanned Surface Vehicles, pp. 252–269. Springer (2012)

    Google Scholar 

  17. Smith, B.M., Zhang, L., Jin, H., Agarwala, A.: Light field video stabilization. In: International Conference on Computer Vision, pp. 341–348 (2009)

    Google Scholar 

  18. Tagliavini, G., Haugou, G., Marongiu, A., Benini, L.: Adrenaline: an OpenVX environment to optimize embedded vision applications on many-core accelerators. In: International Symposium on Embedded Multicore/Many-core Systems-on-Chip, pp. 289–296 (2015)

    Google Scholar 

  19. Wang, H., Wei, Z., Wang, S., Ow, C.S., Ho, K.T., Feng, B.: A vision-based obstacle detection system for unmanned surface vehicle. In: International Conference on Robotics, Automation and Mechatronics, pp. 364–369 (2011)

    Google Scholar 

  20. Yang, K., Elliott, G.A., Anderson, J.H.: Analysis for supporting real-time computer vision workloads using OpenVX on Multicore+GPU platforms. In: International Conference on Real Time and Networks Systems, RTNS ’15, pp. 77–86 (2015)

    Google Scholar 

Download references

Acknowledgements

This work is partially funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 689341.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Aldegheri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aldegheri, S., Bloisi, D.D., Blum, J.J., Bombieri, N., Farinelli, A. (2018). Fast and Power-Efficient Embedded Software Implementation of Digital Image Stabilization for Low-Cost Autonomous Boats. In: Hutter, M., Siegwart, R. (eds) Field and Service Robotics. Springer Proceedings in Advanced Robotics, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-67361-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67361-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67360-8

  • Online ISBN: 978-3-319-67361-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics