Skip to main content

Foresight: Remote Sensing for Autonomous Vehicles Using a Small Unmanned Aerial Vehicle

  • Conference paper
  • First Online:
Field and Service Robotics

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 5))

Abstract

A large number of traffic accidents, especially those involving vulnerable road users such as pedestrians and cyclists, are due to blind spots for the driver, for example when a vehicle takes a turn with poor visibility or when a pedestrian crosses from behind a parked vehicle. In these accidents, the consequences for the vulnerable road users are dramatic. Autonomous cars have the potential to drastically reduce traffic accidents thanks to high-performance sensing and reasoning. However, their perception capabilities are still limited to the field of view of their sensors. We propose to extend the perception capabilities of a vehicle, autonomous or human-driven, with a small Unmanned Aerial Vehicle (UAV) capable of taking off from the car, flying around corners to gather additional data from blind spots and landing back on the car after a mission. We present a holistic framework to detect blind spots in the map that is built by the car, plan an informative path for the drone, and detect potential threats occluded to the car. We have tested our approach with an autonomous car equipped with a drone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NHTSA traffic safety facts. https://crashstats.nhtsa.dot.gov/

  2. van Diggelen, F., Enge, P.: The Worlds first GPS MOOC and Worldwide Laboratory using Smartphones. ION Publications (2015)

    Google Scholar 

  3. Decawave: http://www.decawave.com/. Accessed 07 Apr 2017 (2017)

  4. ASIRT: ASIRT association for safe international road travel 2016. (2016)

    Google Scholar 

  5. Borowczyk, A., Nguyen, D.T., Nguyen, A.P.V., Nguyen, D.Q., Saussié, D., Ny, J.L.: Autonomous landing of a multirotor micro air vehicle on a high velocity ground vehicle (2016). arXiv preprint arXiv:161107329

  6. Bradley, R.: Tesla Autopilot (2016)

    Google Scholar 

  7. Dagan, E., Mano, O., Stein, G.P., Shashua, A.: Forward collision warning with a single camera. In: Intelligent Vehicles Symposium, 2004 IEEE, pp 37–42, (2004). https://doi.org/10.1109/IVS.2004.1336352

  8. Delmerico, J., Mueggler, E., Nitsch, J., Scaramuzza, D.: Active autonomous aerial exploration for ground robot path planning. IEEE Robot. Autom. Lett. 2(2), 664–671 (2017)

    Article  Google Scholar 

  9. Forster, C., Pizzoli, M., Scaramuzza, D.: Air-ground localization and map augmentation using monocular dense reconstruction. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp 3971–3978 (2013)

    Google Scholar 

  10. Hepp, B., Nägeli, T., Hilliges, O.: Omni-directional person tracking on a flying robot using occlusion-robust ultra-wideband signals. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp 189–194 (2016)

    Google Scholar 

  11. Herissé, B., Hamel, T., Mahony, R., Russotto, F.X.: Landing a vtol unmanned aerial vehicle on a moving platform using optical flow. IEEE Trans. Robot. 28(1), 77–89 (2012)

    Article  Google Scholar 

  12. Hollinger, G.A., Djugash, J., Singh, S.: Target tracking without line of sight using range from radio. Auton. Robot. 32(1), 1–14 (2012)

    Article  Google Scholar 

  13. Kempke, B., Pannuto, P., Dutta, P.: Harmonium: asymmetric, bandstitched uwb for fast, accurate, and robust indoor localization. In: Proceedings of the 15th International Conference on Information Processing in Sensor Networks. IEEE Press, p. 15 (2016)

    Google Scholar 

  14. Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man Cybern. Part C (Applications and Reviews) 37(6):1067–1080 (2007)

    Google Scholar 

  15. Michael, N., Shen, S., Mohta, K., Mulgaonkar, Y., Kumar, V., Nagatani, K., Okada, Y., Kiribayashi, S., Otake, K., Yoshida, K., Ohno, K., Takeuchi, E., Tadokoro, S.: Collaborative mapping of an earthquake-damaged building via ground and aerial robots. J. Field Robot. 29(5), 832–841 (2012)

    Article  Google Scholar 

  16. Mueller, M.W., Hamer, M., D’Andrea, R.: (2015) Fusing ultra-wideband range measurements with accelerometers and rate gyroscopes for quadrocopter state estimation. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp 1730–1736, IEEE

    Google Scholar 

  17. Naegeli, T., Alonso-Mora, J., Domahidi, A., Rus, D., Hilliges, O.: Real-time motion planning for aerial videography with dynamic obstacle avoidance and viewpoint optimization. IEEE Robot. Autom. Lett. PP(99) (2017)

    Google Scholar 

  18. Nohmi, M., Fujikura, N., Ueda, C., Toyota, E.: Automatic braking or acceleration control system for a vehicle. US Patent 4,066,230 (1978)

    Google Scholar 

  19. Prorok, A., Martinoli, A.: Accurate indoor localization with ultra-wideband using spatial models and collaboration. Int. J. Robot. Res. 33(4), 547–568 (2014)

    Article  Google Scholar 

  20. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  21. Wallar, A., Araki, B., Chang, R., Alonso-Mora, J., Rus, D.: Supporting video material for Foresight (2015). https://youtu.be/IRhWPcHZmuU

  22. Wenzel, K.E., Masselli, A., Zell, A.: Automatic take off, tracking and landing of a miniature uav on a moving carrier vehicle. J. Intell. Robot. Syst. 61(1), 221–238 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Wallar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wallar, A., Araki, B., Chang, R., Alonso-Mora, J., Rus, D. (2018). Foresight: Remote Sensing for Autonomous Vehicles Using a Small Unmanned Aerial Vehicle. In: Hutter, M., Siegwart, R. (eds) Field and Service Robotics. Springer Proceedings in Advanced Robotics, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-67361-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67361-5_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67360-8

  • Online ISBN: 978-3-319-67361-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics