Skip to main content

Three-Dimensional Tissue Models and Available Probes for Multi-Parametric Live Cell Microscopy: A Brief Overview

  • Chapter
  • First Online:
Multi-Parametric Live Cell Microscopy of 3D Tissue Models

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1035))

Abstract

In recent years, the advances in tissue engineering and regenerative medicine have resulted in introduction of novel 3D tissue models, materials and methods to the regular practice of cell biologists, material scientists and specialists from related areas. 3D tissue models allow mimicking in vivo cell and tissue organization. However, the efficient work in three dimensions has significant challenges, such as compatibility with conventional cell biology methods, live cell imaging and quantification readouts. Here, we briefly discuss the applicability of 3D tissue models to different live cell microscopy modalities and the available range of fluo- and phosphorescent probes and sensors allowing for multi-parametric imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kleinman HK, Philp D, Hoffman MP (2003) Role of the extracellular matrix in morphogenesis. Curr Opin Biotechnol 14:526–532

    Article  CAS  PubMed  Google Scholar 

  2. Neelam S, Hayes PR, Zhang Q, Dickinson RB, Lele TP (2016) Vertical uniformity of cells and nuclei in epithelial monolayers. Sci Rep 6:19689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31:108–115

    Article  CAS  PubMed  Google Scholar 

  4. Fatehullah A, Tan SH, Barker N (2016) Organoids as an in vitro model of human development and disease. Nat Cell Biol 18:246–254

    Article  PubMed  CAS  Google Scholar 

  5. Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130:601–610

    Article  CAS  PubMed  Google Scholar 

  6. Lozano E, Segarra M, García-Martínez A, Hernández-Rodríguez J, Cid MC (2008) Imatinib mesylate inhibits in vitro and ex vivo biological responses related to vascular occlusion in giant cell arteritis. Ann Rheum Dis 67:1581–1588

    Article  CAS  PubMed  Google Scholar 

  7. Arslan-Yildiz A, El Assal R, Chen P, Guven S, Inci F, Demirci U (2016) Towards artificial tissue models: past, present, and future of 3D bioprinting. Biofabrication 8:1758–5090

    Article  CAS  Google Scholar 

  8. Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P et al (2007) A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res 13:3989–3998

    Article  CAS  PubMed  Google Scholar 

  9. Costa EC, Gaspar VM, Coutinho P, Correia IJ (2014) Optimization of liquid overlay technique to formulate heterogenic 3D co-cultures models. Biotechnol Bioeng 111:1672–1685

    Article  CAS  PubMed  Google Scholar 

  10. Foty R (2011) A simple hanging drop cell culture protocol for generation of 3D spheroids. J Vis Exp 51:2720

    Google Scholar 

  11. Markovitz-Bishitz Y, Tauber Y, Afrimzon E, Zurgil N, Sobolev M, Shafran Y et al (2010) A polymer microstructure array for the formation, culturing, and high throughput drug screening of breast cancer spheroids. Biomaterials 31:8436–8444

    Article  CAS  PubMed  Google Scholar 

  12. Kenny PA, Lee GY, Myers CA, Neve RM, Semeiks JR, Spellman PT et al (2007) The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol 1:84–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luca AC, Mersch S, Deenen R, Schmidt S, Messner I, Schäfer K-L et al (2013) Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS One 8:e59689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Härmä V, Virtanen J, Mäkelä R, Happonen A, Mpindi J-P, Knuuttila M et al (2010) A comprehensive panel of three-dimensional models for studies of prostate cancer growth, invasion and drug responses. PLoS One 5:e10431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Laurent J, Frongia C, Cazales M, Mondesert O, Ducommun B, Lobjois V (2013) Multicellular tumor spheroid models to explore cell cycle checkpoints in 3D. BMC Cancer 13:73

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA (2010) Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148:3–15

    Article  CAS  PubMed  Google Scholar 

  17. Liao J, Qian F, Tchabo N, Mhawech-Fauceglia P, Beck A, Qian Z et al (2014) Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, and chemotherapy resistance through hypoxia-resistant metabolism. PLoS One 9:e84941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Longati P, Jia X, Eimer J, Wagman A, Witt M-R, Rehnmark S et al (2013) 3D pancreatic carcinoma spheroids induce a matrix-rich, chemoresistant phenotype offering a better model for drug testing. BMC Cancer 13:95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Herrmann D, Conway JRW, Vennin C, Magenau A, Hughes WE, Morton JP et al (2014) Three-dimensional cancer models mimic cell–matrix interactions in the tumour microenvironment. Carcinogenesis 35:1671–1679

    Article  CAS  PubMed  Google Scholar 

  20. Dolznig H, Rupp C, Puri C, Haslinger C, Schweifer N, Wieser E et al (2011) Modeling colon adenocarcinomas in vitro a 3D co-culture system induces cancer-relevant pathways upon tumor cell and stromal fibroblast interaction. Am J Pathol 179:487–501

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bingle L, Lewis CE, Corke KP, Reed MWR, Brown NJ (2006) Macrophages promote angiogenesis in human breast tumour spheroids in vivo. Br J Cancer 94:101–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pampaloni F, Ansari N, Stelzer EHK (2013) High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy. Cell Tissue Res 352:161–177

    Article  PubMed  Google Scholar 

  23. Dmitriev RI, Borisov SM, Düssmann H, Sun S, Müller BJ, Prehn J et al (2015) Versatile conjugated polymer nanoparticles for high-resolution O2 imaging in cells and 3D tissue models. ACS Nano 9:5275–5288

    Article  CAS  PubMed  Google Scholar 

  24. Jenkins J, Borisov SM, Papkovsky DB, Dmitriev RI (2016) Sulforhodamine nanothermometer for multiparametric fluorescence lifetime imaging microscopy. Anal Chem 88:10566–10572

    Article  CAS  PubMed  Google Scholar 

  25. König K, Uchugonova A, Gorjup E (2011) Multiphoton fluorescence lifetime imaging of 3D-stem cell spheroids during differentiation. Microsc Res Tech 74:9–17

    Article  PubMed  Google Scholar 

  26. Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125

    Article  PubMed  CAS  Google Scholar 

  27. Fujii M, Matano M, Nanki K, Sato T (2015) Efficient genetic engineering of human intestinal organoids using electroporation. Nat Protoc 10:1474–1485

    Article  CAS  PubMed  Google Scholar 

  28. Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C et al (2015) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526:564–568

    Article  CAS  PubMed  Google Scholar 

  29. Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379

    Article  CAS  PubMed  Google Scholar 

  30. Völkner M, Zschätzsch M, Rostovskaya M, Overall Rupert W, Busskamp V, Anastassiadis K et al (2016) Retinal organoids from pluripotent stem cells efficiently recapitulate retinogenesis. Stem Cell Rep 6:525–538

    Article  CAS  Google Scholar 

  31. McCracken KW, Cata EM, Crawford CM, Sinagoga KL, Schumacher M, Rockich BE et al (2014) Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516:400–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dye BR, Hill DR, Ferguson MAH, Tsai Y-H, Nagy MS, Dyal R et al (2015) In vitro generation of human pluripotent stem cell derived lung organoids. elife 4:e05098

    Article  PubMed Central  Google Scholar 

  33. Guye P, Ebrahimkhani MR, Kipniss N, Velazquez JJ, Schoenfeld E, Kiani S et al (2016) Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat Commun 7:10243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moreno EL, Hachi S, Hemmer K, Trietsch SJ, Baumuratov AS, Hankemeier T et al (2015) Differentiation of neuroepithelial stem cells into functional dopaminergic neurons in 3D microfluidic cell culture. Lab Chip 15:2419–2428

    Article  CAS  PubMed  Google Scholar 

  35. Khademhosseini A, Eng G, Yeh J, Kucharczyk PA, Langer R, Vunjak-Novakovic G et al (2007) Microfluidic patterning for fabrication of contractile cardiac organoids. Biomed Microdevices 9:149–157

    Article  PubMed  Google Scholar 

  36. Drost J, van Jaarsveld RH, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A et al (2015) Sequential cancer mutations in cultured human intestinal stem cells. Nature 521:43–47

    Article  CAS  PubMed  Google Scholar 

  37. Okkelman IA, Dmitriev RI, Foley T, Papkovsky DB (2016) Use of fluorescence lifetime imaging microscopy (FLIM) as a timer of cell cycle S phase. PLoS One 11:e0167385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Walsh AJ, Cook RS, Sanders ME, Aurisicchio L, Ciliberto G, Arteaga CL et al (2014) Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. Cancer Res 74:5184–5194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. van Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T (2015) Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotechnol 35:118–126

    Article  PubMed  CAS  Google Scholar 

  40. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32:760–772

    Article  CAS  PubMed  Google Scholar 

  41. Anderson JR, Chiu DT, Wu H, Schueller O, Whitesides GM (2000) Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis 21:27–40

    Article  PubMed  Google Scholar 

  42. Hsiao AY, Y-S T, Tung Y-C, Sud S, Taichman RS, Pienta KJ et al (2009) Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids. Biomaterials 30:3020–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bhise NS, Manoharan V, Massa S, Tamayol A, Ghaderi M, Miscuglio M et al (2016) A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication 8:1758–5090

    Article  CAS  Google Scholar 

  44. Au SH, Chamberlain MD, Mahesh S, Sefton MV, Wheeler AR (2014) Hepatic organoids for microfluidic drug screening. Lab Chip 14:3290–3299

    Article  CAS  PubMed  Google Scholar 

  45. Kim HJ, Ingber DE (2013) Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol 5:1130–1140

    Article  CAS  Google Scholar 

  46. Kim HJ, Huh D, Hamilton G, Ingber DE (2012) Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12:2165–2174

    Article  CAS  PubMed  Google Scholar 

  47. Benam KH, Villenave R, Lucchesi C, Varone A, Hubeau C, Lee H-H et al (2016) Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods 13:151–157

    Article  CAS  PubMed  Google Scholar 

  48. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668

    Article  CAS  PubMed  Google Scholar 

  49. Grosberg A, Alford PW, McCain ML, Parker KK (2011) Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11:4165–4173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Agarwal A, Goss JA, Cho A, McCain ML, Parker KK (2013) Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 13:3599–3608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nieskens TT, Wilmer MJ (2016) Kidney-on-a-chip technology for renal proximal tubule tissue reconstruction. Eur J Pharmacol 790:46–56

    Article  CAS  PubMed  Google Scholar 

  52. Wilmer MJ, Ng CP, Lanz HL, Vulto P, Suter-Dick L, Masereeuw R (2016) Kidney-on-a-chip technology for drug-induced nephrotoxicity screening. Trends Biotechnol 34:156–170

    Article  CAS  PubMed  Google Scholar 

  53. Young EWK, Watson MWL, Srigunapalan S, Wheeler AR, Simmons CA (2010) Technique for real-time measurements of endothelial permeability in a microfluidic membrane chip using laser-induced fluorescence detection. Anal Chem 82:808–816

    Article  CAS  PubMed  Google Scholar 

  54. Ryu H, Oh S, Lee HJ, Lee JY, Lee HK, Jeon NL (2015) Engineering a blood vessel network module for body-on-a-chip applications. J Lab Autom 20:296–301

    Article  CAS  PubMed  Google Scholar 

  55. Kim S, Lee H, Chung M, Jeon NL (2013) Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13:1489–1500

    Article  CAS  PubMed  Google Scholar 

  56. van der Helm MW, van der Meer AD, Eijkel JCT, van den Berg A, Segerink LI (2016) Microfluidic organ-on-chip technology for blood-brain barrier research. Tissue Barriers 4:e1142493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Benam KH, Dauth S, Hassell B, Herland A, Jain A, Jang K-J et al (2015) Engineered in vitro disease models. Annu Rev Pathol 10:195–262

    Article  CAS  PubMed  Google Scholar 

  58. Esch EW, Bahinski A, Huh D (2015) Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 14:248–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kondrashina AV, Papkovsky DB, Dmitriev RI (2013) Measurement of cell respiration and oxygenation in standard multichannel biochips using phosphorescent O2-sensitive probes. Analyst 138:4915–4921

    Article  CAS  PubMed  Google Scholar 

  60. Wikswo JP, Block FE III, Cliffel DE, Goodwin CR, Marasco CC, Markov DA et al (2013) Engineering challenges for instrumenting and controlling integrated organ-on-chip systems. IEEE Trans Biomed Eng 60:682–690

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103:655–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gulrez SKH, Al-Assaf S (2011) Hydrogels: methods of preparation, characterisation and applications. Intech, Rijeka

    Google Scholar 

  63. Meadhbh ÁB, Audrey R, Anne-laure G, Cyril DA, Steven N, Valerie T et al (2015) 3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet-sprayed or electrospun micro-fiber scaffolds. Biomed Mater 10:045019

    Article  CAS  Google Scholar 

  64. Danilevicius P, Georgiadi L, Pateman CJ, Claeyssens F, Chatzinikolaidou M, Farsari M (2015) The effect of porosity on cell ingrowth into accurately defined, laser-made, polylactide-based 3D scaffolds. Appl Surf Sci 336:2–10

    Article  CAS  Google Scholar 

  65. Jenkins J, Dmitriev RI, Morten K, McDermott KW, Papkovsky DB (2015) Oxygen-sensing scaffolds for 3-dimensional cell and tissue culture. Acta Biomater 16:126–135

    Article  CAS  PubMed  Google Scholar 

  66. Place ES, George JH, Williams CK, Stevens MM (2009) Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev 38:1139–1151

    Article  CAS  PubMed  Google Scholar 

  67. Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Artym VV, Matsumoto K (2010) Imaging cells in three-dimensional collagen matrix. Curr Protocol Cell Biol. Chapter:Unit-10.18:1–20

    Google Scholar 

  69. Yurchenco PD (2011) Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol 3. https://doi.org/10.1101/cshperspect.a004911

  70. Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386

    Article  CAS  PubMed  Google Scholar 

  71. Benton G, Kleinman HK, George J, Arnaoutova I (2011) Multiple uses of basement membrane-like matrix (BME/Matrigel) in vitro and in vivo with cancer cells. Int J Cancer 128:1751–1757

    Article  CAS  PubMed  Google Scholar 

  72. Price KJ, Tsykin A, Giles KM, Sladic RT, Epis MR, Ganss R et al (2012) Matrigel basement membrane matrix influences expression of microRNAs in cancer cell lines. Biochem Biophys Res Commun 427:343–348

    Article  CAS  PubMed  Google Scholar 

  73. Dolega ME, Abeille F, Picollet-D'hahan N, Gidrol X (2015) Controlled 3D culture in Matrigel microbeads to analyze clonal acinar development. Biomaterials 52:347–357

    Article  CAS  PubMed  Google Scholar 

  74. Nyga A, Cheema U, Loizidou M (2011) 3D tumour models: novel in vitro approaches to cancer studies. J Cell Commun Signal 5:239

    Article  PubMed  PubMed Central  Google Scholar 

  75. Abitbol T, Rivkin A, Cao Y, Nevo Y, Abraham E, Ben-Shalom T et al (2016) Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol 39:76–88

    Article  CAS  PubMed  Google Scholar 

  76. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  PubMed  CAS  Google Scholar 

  77. Lou YR, Kanninen L, Kuisma T, Niklander J, Noon LA, Burks D et al (2014) The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem Cells Dev 23:380–392

    Article  CAS  PubMed  Google Scholar 

  78. Malinen MM, Kanninen LK, Corlu A, Isoniemi HM, Lou Y-R, Yliperttula ML et al (2014) Differentiation of liver progenitor cell line to functional organotypic cultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydrogels. Biomaterials 35:5110–5121

    Article  CAS  PubMed  Google Scholar 

  79. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    Article  CAS  PubMed  Google Scholar 

  80. Nadernezhad A, Khani N, Skvortsov GA, Toprakhisar B, Bakirci E, Menceloglu Y et al (2016) Multifunctional 3D printing of heterogeneous hydrogel structures. Sci Rep 6

    Google Scholar 

  81. Lee VK, Lanzi AM, Haygan N, Yoo S-S, Vincent PA, Dai G (2014) Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology. Cell Mol Bioeng 7:460–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jung JW, Lee J-S, Cho D-W (2016) Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs. Sci Rep 6:21685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhao Y, Yao R, Ouyang L, Ding H, Zhang T, Zhang K et al (2014) Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 6:1758–5082

    Google Scholar 

  84. Seol YJ, Kang HW, Lee SJ, Atala A, Yoo JJ (2014) Bioprinting technology and its applications. Eur J Cardiothorac Surg 46:342–348

    Article  PubMed  Google Scholar 

  85. Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina ME, Ordóñez-Morán P et al (2016) Designer matrices for intestinal stem cell and organoid culture. Nature 539:560–564

    Article  CAS  PubMed  Google Scholar 

  86. Sachs N, Tsukamoto Y, Kujala P, Peters PJ, Clevers H (2017) Intestinal epithelial organoids fuse to form self-organizing tubes in floating collagen gels. Development 144:1107–1112

    Article  CAS  PubMed  Google Scholar 

  87. Schnell U, Dijk F, Sjollema KA, Giepmans BNG (2012) Immunolabeling artifacts and the need for live-cell imaging. Nat Methods 9:152–158

    Article  CAS  PubMed  Google Scholar 

  88. Jamieson LE, Harrison DJ, Campbell CJ (2015) Chemical analysis of multicellular tumour spheroids. Analyst 140:3910–3920

    Article  CAS  PubMed  Google Scholar 

  89. Quaranta M, Borisov SM, Klimant I (2012) Indicators for optical oxygen sensors. Bioanal Rev 4:115–157

    Article  PubMed  PubMed Central  Google Scholar 

  90. Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110:2641–2684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Swoger J, Pampaloni F, Stelzer EH (2014) Light-sheet-based fluorescence microscopy for three-dimensional imaging of biological samples. Cold Spring Harb Protoc 1:1–8

    Google Scholar 

  92. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940

    Article  CAS  PubMed  Google Scholar 

  93. Benninger RKP, Piston DW (2001) Two-photon excitation microscopy for the study of living cells and tissues. Curr Protocols Cell Biol. https://doi.org/10.1002/0471143030.cb0411s59

  94. Hopt A, Neher E (2001) Highly nonlinear photodamage in two-photon fluorescence microscopy. Biophys J 80:2029–2036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ustione A, Piston DW (2011) A simple introduction to multiphoton microscopy. J Microsc 243:221–226

    Article  CAS  PubMed  Google Scholar 

  96. Patterson GH, Piston DW (2000) Photobleaching in two-photon excitation microscopy. Biophys J 78:2159–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–1009

    Article  CAS  PubMed  Google Scholar 

  98. Santi PA (2011) Light sheet fluorescence microscopy. J Histochem Cytochem 59:129–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cella Zanacchi F, Lavagnino Z, Perrone Donnorso M, Del Bue A, Furia L, Faretta M et al (2011) Live-cell 3D super-resolution imaging in thick biological samples. Nat Methods 8:1047–1049

    Article  PubMed  CAS  Google Scholar 

  100. Patra B, Peng YS, Peng CC, Liao WH, Chen YA, Lin KH et al (2014) Migration and vascular lumen formation of endothelial cells in cancer cell spheroids of various sizes. Biomicrofluidics 8:052109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Marx V (2016) Microscopy: openSPIM 2.0. Nat Methods 13:979–982

    Article  CAS  PubMed  Google Scholar 

  102. Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    Article  CAS  PubMed  Google Scholar 

  103. Hirvonen LM, Wicker K, Mandula O, Heintzmann R (2009) Structured illumination microscopy of a living cell. Eur Biophys J 38:807–812

    Article  PubMed  Google Scholar 

  104. Gustafsson MGL, Shao L, Carlton PM, Wang CJR, Golubovskaya IN, Cande WZ et al (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94:4957–4970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. van de Linde S, Loschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M et al (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6:991–1009

    Article  PubMed  CAS  Google Scholar 

  107. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97:8206–8210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Takasaki Kevin T, Ding Jun B, Sabatini BL (2013) Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. Biophys J 104:770–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Specht EA, Braselmann E, Palmer AE (2016) A critical and comparative review of fluorescent tools for live cell imaging. Annu Rev Physiol 79:93–117

    Article  PubMed  CAS  Google Scholar 

  111. Niehorster T, Loschberger A, Gregor I, Kramer B, Rahn H-J, Patting M et al (2016) Multi-target spectrally resolved fluorescence lifetime imaging microscopy. Nat Methods 13:257–262

    Article  PubMed  CAS  Google Scholar 

  112. Giordano L, Shvadchak VV, Fauerbach JA, Jares-Erijman EA, Jovin TM (2012) Highly Solvatochromic 7-Aryl-3-hydroxychromones. J Phys Chem Lett 3:1011–1016

    Article  CAS  PubMed  Google Scholar 

  113. Shcheslavskiy VI, Neubauer A, Bukowiecki R, Dinter F, Becker W (2016) Combined fluorescence and phosphorescence lifetime imaging. Appl Phys Lett 108:091111

    Article  CAS  Google Scholar 

  114. Papkovsky DB, Dmitriev RI (2013) Biological detection by optical oxygen sensing. Chem Soc Rev 42:8700–8732

    Article  CAS  PubMed  Google Scholar 

  115. Hirvonen LM, Fisher-Levine M, Suhling K, Nomerotski A (2017) Photon counting phosphorescence lifetime imaging with TimepixCam. Rev Sci Instrum 88:013104

    Article  PubMed  CAS  Google Scholar 

  116. Becker W (2012) Fluorescence lifetime imaging--techniques and applications. J Microsc 247:119–136

    Article  CAS  PubMed  Google Scholar 

  117. Blacker TS, Mann ZF, Gale JE, Ziegler M, Bain AJ, Szabadkai G et al (2014) Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat Commun 5:3936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chudakov DM, Lukyanov S, Lukyanov KA (2005) Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23:605–613

    Article  CAS  PubMed  Google Scholar 

  119. Mishin AS, Belousov VV, Solntsev KM, Lukyanov KA (2015) Novel uses of fluorescent proteins. Curr Opin Chem Biol 27:1–9

    Article  CAS  PubMed  Google Scholar 

  120. Nothdurft R, Sarder P, Bloch S, Culver J, Achilefu S (2012) Fluorescence lifetime imaging microscopy using near-infrared contrast agents. J Microsc 247:202–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44:4743–4768

    Article  CAS  PubMed  Google Scholar 

  122. Ma N, Digman MA, Malacrida L, Gratton E (2016) Measurements of absolute concentrations of NADH in cells using the phasor FLIM method. Biomed Opt Express 7:2441–2452

    Article  PubMed  PubMed Central  Google Scholar 

  123. Blacker TS, Duchen MR (2016) Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic Biol Med 100:53–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cannon TM, Shah AT, Skala MC (2017) Autofluorescence imaging captures heterogeneous drug response differences between 2D and 3D breast cancer cultures. Biomed Opt Express 8:1911–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mongeon R, Venkatachalam V, Yellen G (2016) Cytosolic NADH-NAD(+) redox visualized in brain slices by two-photon fluorescence lifetime biosensor imaging. Antioxid Redox Signal 25:553–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wagener KC, Kolbrink B, Dietrich K, Kizina KM, Terwitte LS, Kempkes B et al (2016) Redox indicator mice stably expressing genetically encoded neuronal roGFP: versatile tools to decipher subcellular redox dynamics in neuropathophysiology. Antioxid Redox Signal 25:41–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dmitriev RI, Papkovsky DB (2015) Intracellular probes for imaging oxygen concentration: how good are they? Methods Appl Fluoresc 3:034001

    Article  CAS  Google Scholar 

  128. Dmitriev RI, Kondrashina AV, Koren K, Klimant I, Zhdanov AV, Pakan JM et al (2014) Small molecule phosphorescent probes for O2 imaging in 3D tissue models. Biomater Sci 2:853–866

    Article  CAS  Google Scholar 

  129. Dmitriev RI, Okkelman IA, Foley T, Papkovsky DB (2017) Live cell microscopy of intestinal organoid oxygenation. FASEB J 31:590.1

    Google Scholar 

  130. Zhdanov AV, Okkelman IA, Golubeva AV, Doerr B, Hyland NP, Melgar S et al (2017) Quantitative analysis of mucosal oxygenation using ex vivo imaging of healthy and inflamed mammalian colon tissue. Cell Mol Life Sci 74:141–151

    Article  CAS  PubMed  Google Scholar 

  131. Zhdanov AV, Golubeva AV, Okkelman IA, Cryan JF, Papkovsky DB (2015) Imaging of oxygen gradients in giant umbrella cells: an ex vivo PLIM study. Am J Phys 309:C501–C5C9

    Article  CAS  Google Scholar 

  132. Dmitriev RI, Papkovsky DB (2015) Multi-parametric O2 imaging in three-dimensional neural cell models with the phosphorescent probes. In: Lossi L, Merighi A (eds) Neuronal cell death: methods and protocols. Springer New York, New York, NY, pp 55–71

    Google Scholar 

  133. Zhdanov AV, Okkelman IA, Collins FWJ, Melgar S, Papkovsky DB (2015) A novel effect of DMOG on cell metabolism: direct inhibition of mitochondrial function precedes HIF target gene expression. Biochim Biophys Acta 1847:1254–1266

    Article  CAS  PubMed  Google Scholar 

  134. Roussakis E, Li Z, Nichols AJ, Evans CL (2015) Oxygen-sensing methods in biomedicine from the macroscale to the microscale. Angew Chem Int Ed 54:8340–8362

    Article  CAS  Google Scholar 

  135. Yazgan G, Dmitriev RI, Tyagi V, Jenkins J, Rotaru G-M, Rottmar M et al (2017) Steering surface topographies of electrospun fibers: understanding the mechanisms. Sci Rep 7:158

    Article  PubMed  PubMed Central  Google Scholar 

  136. Poëa-Guyon S, Pasquier H, Mérola F, Morel N, Erard M (2013) The enhanced cyan fluorescent protein: a sensitive pH sensor for fluorescence lifetime imaging. Anal Bioanal Chem 405:3983–3987

    Article  PubMed  CAS  Google Scholar 

  137. Tantama M, Hung YP, Yellen G (2011) Imaging intracellular pH in live cells with a genetically-encoded red fluorescent protein sensor. J Am Chem Soc 133:10034–10037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Aigner D, Dmitriev R, Borisov S, Papkovsky D, Klimant I (2014) pH-sensitive perylene bisimide probes for live cell fluorescence lifetime imaging. J Mater Chem B 2:6792–6801

    Article  CAS  Google Scholar 

  139. Hille C, Berg M, Bressel L, Munzke D, Primus P, Löhmannsröben H-G et al (2008) Time-domain fluorescence lifetime imaging for intracellular pH sensing in living tissues. Anal Bioanal Chem 391:1871

    Article  CAS  PubMed  Google Scholar 

  140. Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ (2009) Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323:1211–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wilms CD, Schmidt H, Eilers J (2006) Quantitative two-photon Ca2+ imaging via fluorescence lifetime analysis. Cell Calcium 40:73–79

    Article  CAS  PubMed  Google Scholar 

  142. Wilms CD, Eilers J (2007) Photo-physical properties of Ca2+−indicator dyes suitable for two-photon fluorescence-lifetime recordings. J Microsc 225:209–213

    Article  CAS  PubMed  Google Scholar 

  143. Rinnenthal JL, Börnchen C, Radbruch H, Andresen V, Mossakowski A, Siffrin V et al (2013) Parallelized TCSPC for dynamic intravital fluorescence lifetime imaging: quantifying neuronal dysfunction in neuroinflammation. PLoS One 8:e60100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Heim N, Garaschuk O, Friedrich MW, Mank M, Milos RI, Kovalchuk Y et al (2007) Improved calcium imaging in transgenic mice expressing a troponin C-based biosensor. Nat Methods 4:127–129

    Article  CAS  PubMed  Google Scholar 

  145. Sotelo-Hitschfeld T, Niemeyer MI, Mächler P, Ruminot I, Lerchundi R, Wyss MT et al (2015) Channel-mediated lactate release by K+-stimulated astrocytes. J Neurosci 35:4168

    Article  CAS  PubMed  Google Scholar 

  146. San Martín A, Ceballo S, Ruminot I, Lerchundi R, Frommer WB, Barros LF (2013) A genetically encoded FRET lactate sensor and its use to detect the warburg effect in single cancer cells. PLoS One 8:e57712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Shimolina LE, Izquierdo MA, López-Duarte I, Bull JA, Shirmanova MV, Klapshina LG et al (2017) Imaging tumor microscopic viscosity in vivo using molecular rotors. Sci Rep 7:41097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435:297–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Foster KA, Galeffi F, Gerich FJ, Turner DA, Müller M (2006) Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration. Prog Neurobiol 79:136–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kalyanaraman B, Darley-Usmar V, Davies KJA, Dennery PA, Forman HJ, Grisham MB et al (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52:1–6

    Article  CAS  PubMed  Google Scholar 

  151. Jenkins J, Papkovsky DB, Dmitriev RI (2016) The Ca2+/Mn2+-transporting SPCA2 pump is regulated by oxygen and cell density in colon cancer cells. Biochem J 473:2507–2518

    Article  CAS  PubMed  Google Scholar 

  152. Dmitriev RI, Borisov SM, Jenkins J, Papkovsky DB (2015) Multi-parametric imaging of tumor spheroids with ultra-bright and tunable nanoparticle O2 probes. Proc SPIE 9328:932806–932808

    Article  Google Scholar 

  153. Lowell BB, Spiegelman BM (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404:652–660

    CAS  PubMed  Google Scholar 

  154. Bal NC, Maurya SK, Sopariwala DH, Sahoo SK, Gupta SC, Shaikh SA et al (2012) Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat Med 18:1575–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Fedorenko A, Lishko PV, Kirichok Y (2012) Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151:400–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhou H, Sharma M, Berezin O, Zuckerman D, Berezin MY (2016) Nanothermometry: from microscopy to thermal treatments. ChemPhysChem 17:27–36

    Article  CAS  PubMed  Google Scholar 

  157. Repasky EA, Evans SS, Dewhirst MW (2013) Temperature matters! and why it should matter to tumor immunologists. Cancer Immunol Res 1:210–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lukinavičius G, Blaukopf C, Pershagen E, Schena A, Reymond L, Derivery E et al (2015) SiR-Hoechst is a far-red DNA stain for live-cell nanoscopy. Nat Commun 6:8497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Laviv T, Kim BB, Chu J, Lam AJ, Lin MZ, Yasuda R (2016) Simultaneous dual-color fluorescence lifetime imaging with novel red-shifted fluorescent proteins. Nat Methods 13:989–992

    Article  CAS  PubMed  Google Scholar 

  160. Weber P, Schickinger S, Wagner M, Angres B, Bruns T, Schneckenburger H (2015) Monitoring of apoptosis in 3D cell cultures by FRET and light sheet fluorescence microscopy. Int J Mol Sci 16:5375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Nobis M, McGhee EJ, Morton JP, Schwarz JP, Karim SA, Quinn J et al (2013) Intravital FLIM-FRET imaging reveals dasatinib-induced spatial control of src in pancreatic cancer. Cancer Res 73:4674–4686

    Article  CAS  PubMed  Google Scholar 

  162. Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y et al (2015) Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 21:256–262

    CAS  PubMed  Google Scholar 

  163. Görlitz F, Kelly DJ, Warren SC, Alibhai D, West L, Kumar S et al (2017) Open source high content analysis utilizing automated fluorescence lifetime imaging microscopy. J Vis Exp 119:55119

    Google Scholar 

Download references

Acknowledgments

This work was supported by Science Foundation Ireland (SFI) grant 13/SIRG/2144. We thank Prof. D. Papkovsky for useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruslan I. Dmitriev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

O’Donnell, N., Dmitriev, R.I. (2017). Three-Dimensional Tissue Models and Available Probes for Multi-Parametric Live Cell Microscopy: A Brief Overview. In: Dmitriev, R. (eds) Multi-Parametric Live Cell Microscopy of 3D Tissue Models. Advances in Experimental Medicine and Biology, vol 1035. Springer, Cham. https://doi.org/10.1007/978-3-319-67358-5_4

Download citation

Publish with us

Policies and ethics