Skip to main content

Abstract

Multivariate time series analysis in climate and environmental research always requires to process huge amount of data. Inspired by human nervous system, the artificial neural network methodology is a powerful tool to handle this kind of difficult and challenge problems and has been widely used to investigate mechanism of climate change and predict the climate change trend. The main advantage is that artificial neural networks make full use of some unknown information hidden in climate data although they cannot extract it. In this chapter, we will introduce various neural networks, including linear networks, radial basis function networks, generalized regression networks, Kohonen self-organizing networks, learning vector quantization networks, and Hopfield networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • H.Z. Abyaneh, M.B. Varkeshi, G. Golmohammadi, K. Mohammadi, Soil temperature estimation using an artificial neural network and co-active neuro-fuzzy inference system in two differen climates. Arab. J. Geosci. 9, 377 (2016)

    Article  Google Scholar 

  • M.A. Amiri, Y. Amerian, M.S. Mesgari, Spatial and temporal monthly precipitation forecasting using wavelet transform and neural networks, Qara-Qum catchment, Iran. Arab. J. Geosci. 9, 421 (2016)

    Article  Google Scholar 

  • P.D. Brooks, D. McKnight, K. Elder, Carbon limitation of soil respiration under winter snowpacks: potential feedbacks between growing season and winter carbon fluxes. Glob. Change Biol. 11, 231–238 (2004)

    Article  Google Scholar 

  • A. Gersho, R.M. Gray, Vector Quantization and Signal Compression (Kluwer, Norwell, MA, 1992)

    Book  Google Scholar 

  • R.L. Hardy, Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76, 1905–1915 (1971)

    Article  Google Scholar 

  • S. Haykin, Neural Networks and Learning Machines, 3rd edn. (New York, Pearson Education, 2008)

    Google Scholar 

  • J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79, 2554–2558 (1982)

    Article  CAS  Google Scholar 

  • J.J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. U.S.A. 81, 3088–3092 (1984)

    Article  CAS  Google Scholar 

  • J.J. Hopfield, Neurons, dynamics and computation. Phys. Today 47, 40–46 (1994)

    Article  Google Scholar 

  • T. Kohonen, Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 (1982)

    Article  Google Scholar 

  • T. Kohonen, The self-organizing map. Proc. Inst. Electr. Electron. Eng. 78, 1464–1480 (1990)

    Article  Google Scholar 

  • T. Kohonen, Self-organizing Maps, 2nd edn. (Springer, Berlin, 1997)

    Book  Google Scholar 

  • A. Krzyzak, T. Linder, G. Lugosi, Nonparametric estimation and classification using radial basis functions. IEEE Trans. Neural Networks 7, 475–487 (1996)

    Article  CAS  Google Scholar 

  • S.P. Luttrell, Self-organization: A Derivation from First Principle of a Class of Learning Algorithms (IEEE Conference on Neural Networks, Washington, DC, 1989)

    Google Scholar 

  • C.A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite function. Constr. Approx. 2, 11–22 (1986)

    Article  Google Scholar 

  • E.A. Nadaraya, On estimating regression. Theory Probab. Appl. 9, 141–142 (1964)

    Article  Google Scholar 

  • K. Obermayer, H. Ritter, K. Schulten, Development and spatial structure of cortical feature maps: a model study, Advances in Neural Information Proceeding Systems (Morgan Kaufmann, San Mateo, CA, 1991), pp. 11–17

    Google Scholar 

  • M. Ozturk, O. Salman, M. Koc, Artificial neural network model for estimating the soil temperature. Can. J. Soil Sci. 91, 551–562 (2011)

    Article  Google Scholar 

  • E. Parzen, On estimation of a probability density function and mode. Ann. Math. Stat. 23, 1065–1076 (1962)

    Article  Google Scholar 

  • H. Ritter, T. Martinetz, K. Schulten, Neural Computation and Self-organizing Maps: An Introduction (Addison-Wesley, Reading, MA, 1992)

    Google Scholar 

  • M. Rosenblatt, Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27, 832–837 (1956)

    Article  Google Scholar 

  • M. Rosenblatt, Density estimates and Morkov sequences, in Nonparametric Techniques in Statistical Inference, ed. by M. Puri (Cambridge University Press, London, 1970)

    Google Scholar 

  • A.J. Tenge, F.B.S. Kaihura, R. Lal, B.R. Singh, Diurnal soil temperature fluctuations for different erosional classes of an oxisol at Mlingano, Tanzania. Soil Tillage Res. 49, 211–217 (1998)

    Article  Google Scholar 

  • D.S. Tourtzky, D.A. Pomerleau, What is hidden in the hidden layers? Byte 14, 227–233 (1989)

    Google Scholar 

  • H.L. Van Trees, Trees, Detection, Estimation, and Modulation Theory, Part I (Wiley, New York, 1968)

    Google Scholar 

  • G.S. Watson, Smooth regression analysis. Sankhy\(\bar{a}\) Indian J. Stat. Ser. A 26, 359–372 (1964)

    Google Scholar 

  • L. Xu, A. Krzyzak, A. Yuille, On radial basis function nets and kernel regression: statistical consistency, convergency rates, and receptive field size. Neural Netw. 7, 609–628 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Z. (2018). Artificial Neural Network. In: Multivariate Time Series Analysis in Climate and Environmental Research. Springer, Cham. https://doi.org/10.1007/978-3-319-67340-0_1

Download citation

Publish with us

Policies and ethics