Skip to main content

Trends in Photonics

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

The name “Photonics” derived from the Greek word “photos” meaning “light” and photonics is closely related to “optics” as the “science of light” in the classical way as a wave (classical optics) and in the quantum way as a particle (quantum optics). With the development of lasers and data transmission, the term of “Photonics” was introduced from the necessity to describe a research field, whose aim was to use light to perform functions that usually fell within the domain of electronics such as information processing. Hence, Photonics can be defined as the science referring to generation, transmission, amplification, detection, modulation and manipulation of photons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Yablonovitch, Photonic Crystals: Semiconductors of Light (Scientific American, Inc., 2001), pp. 47–55

    Google Scholar 

  2. J. Park, K.Y. Kim, I.M. Lee, H. Na, S.Y. Lee, B. Lee, Trapping light in plasmonic waveguides. Opt. Express 18(2), 598–623 (2010)

    Article  Google Scholar 

  3. B. Zhang, Y. Hou, F. Teng, Z. Lou, X. Liu, Y. Wang, Electric field-modulated amplified spontaneous emission in waveguides based on poly 2-methoxy-5-(2’-ethylhexyloxy)-1, 4-phenylene vinylene. Appl. Phys. Lett. 96(10) (2010)

    Google Scholar 

  4. T. Ameri, G. Dennler, C. Lungenschmied, C.J. Brabec, Organic tandem solar cells: a review. Energy Environ. Sci. 2(4), 347–363 (2009)

    Article  Google Scholar 

  5. E.D. Palik et al., Handbook of Optical Constants of Solids (1998)

    Google Scholar 

  6. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 16(12), 4370–4379 (1972)

    Article  Google Scholar 

  7. M. Girtan, Investigations on the optical constants of indium oxide thin films prepared by ultrasonic spray pyrolysis. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 118(1–3), 175–178 (2005)

    Google Scholar 

  8. T.A.F. König, P.A. Ledin, J. Kerszulis, M.A. Mahmoud, M.A. El-Sayed, J.R. Reynolds, V.V. Tsukruk, Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer. ACS Nano 8, 6182–6192 (2014)

    Article  Google Scholar 

  9. S. Major, A. Banerjee, K.L. Chopra, Optical and electronical properties of zinc oxide films prepared by spray pyrolysis. Thin Solid Films 125, 179–185 (1985)

    Article  Google Scholar 

  10. Ashwith K. Chilvery, Ashok K. Batra, R.B. Padmaja Guggilla, Raja Surabhi Lal, Energy Sci. Technol. 4(2), 6–11 (2012)

    Google Scholar 

  11. Ou Runqing, Robert Samuels, Xingwu Wang, Richard Gregory, Characterization of anisotropic structure in poly(phenylene vinylene) films. Polym. Eng. Sci. 41(10), 1705–1713 (2001)

    Article  Google Scholar 

  12. C. Roychoudhuri, Fundamentals of Photonics (Spie Press Book, 2008)

    Google Scholar 

  13. A.N. Safonov, M. Jory, B.J. Matterson, J.M. Lupton, M.G. Salt, J.A.E. Wasey, W.L. Barnes, I.D.W. Samuel, Modification of polymer light emission by lateral microstructure. Synth. Met. 116, 145–148 (2001)

    Article  Google Scholar 

  14. A. Rao, R.H. Friend, N.C. Greenham, B. Ehrler, M.W.B. Wilson, Singlet exciton fission-sensitized infrared quantum dot solar cells. Nano Lett. 12, 1053–1057 (2012)

    Article  Google Scholar 

  15. A.M.A. Leguy, Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber, P. Azarhoosh, M. van Schilfgaarde, M.T. Weller, T. Bein, J. Nelson, P. Docampo, P.R.F. Barnes, Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Matter. 27, 3397–3407 (2015)

    Article  Google Scholar 

  16. https://www.photonics.com

  17. L.A. Clodren, S.W. Corzine, M.L. Masanovic, Diode Lasers and Photonic Integrated Circuits (Wiley, Hoboken, 2012)

    Book  Google Scholar 

  18. R. Zia, M.L. Brongersma, Surface plasmon polariton analogue to Young’s double-slit experiment. Nat. Nanotechnol. 2(7) (2007)

    Google Scholar 

  19. J.T. Kim, S.Y. Choi, Graphene-based plasmonic waveguides for photonic integrated circuits. Opt. Express 19(24), 24557–24562 (2011)

    Article  Google Scholar 

  20. Z. Fei et al., Electronic and plasmonic phenomena at graphene grain boundaries. Nat. Nanotechnol. 8(11), 821–825 (2013)

    Article  Google Scholar 

  21. D. Wiersma, Laser physics: the smallest random laser. Nature 406(6792), 132–135 (2000)

    Article  Google Scholar 

  22. C.T. Dominguez, Y. Lacroute, D. Chaumont, M. Sacilotti, C.B. De Araújo, A.S.L. Gomes, Microchip Random Laser based on a disordered TiO_2-nanomembranes arrangement. Opt. Express 20(16), 17380 (2012)

    Google Scholar 

  23. I. Viola, N. Ghofraniha, A. Zacheo, V. Arima, C. Conti, G. Gigli, Random laser emission from a paper-based device. J. Mater. Chem. C 1(48), 8128–8133 (2013)

    Article  Google Scholar 

  24. B. Redding, M.A. Choma, H. Cao, Speckle-free laser imaging using random laser illumination. Nat. Photonics 6(6), 355–359 (2012)

    Article  Google Scholar 

  25. M.A. Noginov et al., Demonstration of a spaser-based nanolaser. Nature 460(7259), 1110–1112 (2009)

    Article  Google Scholar 

  26. R.A. Flynn et al., A room-temperature semiconductor spaser operating near 1.5 μm. Opt. Express 19(9), 8954–8961 (2011)

    Article  MathSciNet  Google Scholar 

  27. S. Han et al., Graphene Q-switched 0.9-\mu m Nd:La0.11Y0.89VO4 laser. Chin. Opt. Lett. 12(1) (2014)

    Google Scholar 

  28. H. Lee et al., Polarization insensitive graphene saturable absorbers using etched fiber for highly stable ultrafast fiber lasers. Opt. Express 23(17), 22116 (2015)

    Google Scholar 

  29. C. Wenshan, S.J. White, M.L. Brongersma, Compact, high speed and power efficient electro-optic plasmonic modulators. Nano Lett. 9(12), 4403–4411 (2009)

    Google Scholar 

  30. E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758) (2006)

    Google Scholar 

  31. J.S. Shin, J.T. Kim, Broadband silicon optical modulator using a graphene-integrated hybrid plasmonic waveguide. Nanotechnology 26(36) (2015)

    Google Scholar 

  32. J. Hwang et al., A single-molecule optical transistor. Nature 460(7251), 76–80 (2009)

    Article  Google Scholar 

  33. D.J. Gundlach, Y.Y. Lin, T.N. Jackson, S.F. Nelson, D.G. Schlom, Pentacene organic thin-film transistors—molecular ordering and mobility. IEEE Electron Device Lett. 18(3), 87–89 (1997)

    Article  Google Scholar 

  34. C.D. Dimitrakopoulos, A.R. Brown, A. Pomp, Molecular beam deposited thin films of pentacene for organic field effect transistor applications. J. Appl. Phys. 80(4), 2501–2508 (1996)

    Article  Google Scholar 

  35. Y.Y. Lin, D.J. Gundlach, S.F. Nelson, T.N. Jackson, Stacked pentacene layer organic thin-film transistors with improved characteristics. IEEE Electron Device Lett. 18(12), 606–608 (1997)

    Article  Google Scholar 

  36. C.D. Sheraw, T.N. Jackson, D.L. Eaton, J.E. Anthony, Functionalized pentacene active layer organic thin-film transistors. Adv. Mater. 15(23), 2009–2011 (2003)

    Article  Google Scholar 

  37. Harry A. Atwater, The Promise of plasmonics. Sci. Am. 296(4), 56–63 (2007)

    Article  Google Scholar 

  38. SPIE Newsroom. doi:10.1117/2.1201311.005035

  39. M. Girtan, Is photonics the new electronics? Mihaela Girtan discusses electronics and the rise of photonics, and asks what the future has in store for technology. Mater. Today 17(3), 100–101 (2014)

    Article  Google Scholar 

  40. H. Haas, L. Yin, Y. Wang, C. Chen, What is LiFi? J. Light. Technol. 34(6), 1533–1544 (2016)

    Article  Google Scholar 

  41. L. Novotny, Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98(26) (2007)

    Google Scholar 

  42. P. Mühlschlegel, H.-J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Applied physics: resonant optical antennas. Science 308(5728), 1607–1609 (2005)

    Article  Google Scholar 

  43. N. Liu et al., Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 8(9), 758–762 (2009)

    Article  Google Scholar 

  44. L. Novotny, N.C Van Hulst, Antennas for light. Nat. Photonics 5(2), 83–90 (2011)

    Google Scholar 

  45. K. Dholakia, P. Reece, M. Gu, Optical micromanipulation. Chem. Soc. Rev. 37(1), 42–55 (2008)

    Article  Google Scholar 

  46. M. Dienerowitz, M. Mazilu, K. Dholakia, Optical manipulation of nanoparticles: a review. J. Nanophotonics 2(1) (2008)

    Google Scholar 

  47. T. Čižimár, H.I.C. Dalgarno, P.C. Ashok, F.J. Gunn-Moore, K. Dholakia, Optical aberration compensation in a multiplexed optical trapping system. J. Opt. 13(4) (2011)

    Google Scholar 

  48. T. Ćižmár, O. Brzobohatỳ, K. Dholakia, P. Zemánek, The holographic optical micro-manipulation system based on counter-propagating beams. Laser Phys. Lett. 8(1), 50–56 (2011)

    Article  Google Scholar 

  49. T. Čižmár, K. Dholakia, Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express 19(20), 18871–18884 (2011)

    Article  Google Scholar 

  50. K. Dholakia, T. Čižmár, Shaping the future of manipulation. Nat. Photonics 5(6), 335–342 (2011)

    Article  Google Scholar 

  51. N.K. Metzger, M. Mazilu, L. Kelemen, P. Ormos, K. Dholakia, Observation and simulation of an optically driven micromotor J. Opt. 13(4) (2011)

    Google Scholar 

  52. M. Ploschner, M. Mazilu, T. Čižmár, K. Dholakia, Numerical investigation of passive optical sorting of plasmon nanoparticles. Opt. Express 19(15), 13922–13933 (2011)

    Article  Google Scholar 

  53. P. Haro-González et al., Gold nanorod assisted intracellular optical manipulation of silica microspheres. Opt. Express 22(16), 19735–19747 (2014)

    Article  Google Scholar 

  54. K. Dholakia, New directions in optical manipulation, in Proceedings of Frontiers in Optics, 2015 (FIO, 2015)

    Google Scholar 

  55. S.E.S. Spesyvtseva, K. Dholakia, Trapping in a material world. ACS Photonics 3(5), 719–736 (2016)

    Article  Google Scholar 

  56. R. Pool, Trapping with optical tweezers. Science 241(4869), 1042 (1988)

    Article  Google Scholar 

  57. S.M. Block, D.F. Blair, H.C. Berg, Compliance of bacterial flagella measured with optical tweezers. Nature 338(6215), 514–518 (1989)

    Article  Google Scholar 

  58. S. Chu, Laser manipulation of atoms and particles. Science 253(5022), 861–866 (1991)

    Article  Google Scholar 

  59. A. Ashkin, Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime, Biophys. J. 61(2 I), 569–582 (1992)

    Google Scholar 

  60. D.G. Grier, A revolution in optical manipulation. Nature 424(6950), 810–816 (2003)

    Article  Google Scholar 

  61. K.C. Neuman, A. Nagy, Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5(6), 491–505 (2008)

    Article  Google Scholar 

  62. Y. Arita, M. Mazilu, K. Dholakia, Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun 4 (2013)

    Google Scholar 

  63. Y.K. Bae, Physics Procedia 38, 253–279 (2012)

    Article  Google Scholar 

  64. W.O. Schall, W.L. Bohn, H.-A. Eckel, W. Mayerhofer, W. Riede, E. Zeyfang, Lightcraft experiments in Germany, in Proceedings of SPIEThe International Society for Optical Engineering, vol. 4065 (2000), pp. 472–481

    Google Scholar 

  65. W.O. Schall, H.-A. Eckel, W. Mayerhofer, W. Riede, E. Zeyfang, Comparative lightcraft impulse measurements, in Proceedings of SPIEThe International Society for Optical Engineering, vol. 4760 (2002), pp. 908–917

    Google Scholar 

  66. Y.K. Bae, First demonstration of photonic laser thruster, in Proceeding of SPIE 7005, High-Power Laser Ablation VII, 700510, 15 May 2008. doi:10.1117/12.782595

  67. C.Y. Liu, Opt. Express 22(14), 16731 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Girtan .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Girtan, M. (2018). Trends in Photonics. In: Future Solar Energy Devices. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-67337-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67337-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67336-3

  • Online ISBN: 978-3-319-67337-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics