Natural Biopolymer-Based Nanocomposite Films for Packaging Applications

  • Tahrima B. Rouf
  • Jozef L. KokiniEmail author


Recent interest in environmentally friendly bio-based polymers coupled with an increased food safety awareness has resulted in various packaging technology advances, including the incorporation of different kinds of nanofillers into biodegradable biopolymers to improve their overall properties for improving shelf life and preventing microbial growth. Among the different nanofillers that have recently emerged, graphene’s invention has catalyzed a multitude of novel material applications in different fields. Graphene has functionalized different biopolymers and has improved their mechanical, thermal, electrical, as well as, gas, and water vapor barrier properties, for potentially replacing petrochemical-based packaging materials that pose a great threat to the environment. The objective of this chapter is to provide comprehensive understanding of the different types of nanoreinforcement that are available for biodegradable packaging application, especially focusing on graphene oxide (GO), a graphene derivative nanofiller that is being extensively studied for packaging reinforcement. This chapter aims to draw a clear picture of synthesis and chemistry of bonding between graphene derivatives and biodegradable biopolymers suitable for packaging applications, like starch, cellulose, poly(lactic acid), and others. The methodology behind the chemical and physical changes during synthesis will be discussed, based on different spectroscopic characterization techniques, and the influence of chemical changes on resulting properties will also be highlighted. This chapter will also briefly go over other nanomaterials like clay, cellulose nanofibers, starch nanocrystals, and their usage in different biopolymers for packaging application. This will help to explain the synergy resulting from addition of nanomaterials, the use of different characterization techniques as well as the improvement in different properties.


Biopolymer Smart packaging Graphene Spectroscopic characterizations Nanoclay Packaging sensors 


  1. Affdl JCH, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16:344–352. doi: 10.1002/pen.760160512 CrossRefGoogle Scholar
  2. Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736CrossRefGoogle Scholar
  3. Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68:557–565CrossRefGoogle Scholar
  4. Alexandre B, Langevin D, Médéric P et al (2009) Water barrier properties of polyamide 12/montmorillonite nanocomposite membranes: structure and volume fraction effects. J Membr Sci 328:186–204CrossRefGoogle Scholar
  5. An J, Zhang M, Wang S, Tang J (2008) Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT-Food Sci Technol 41:1100–1107CrossRefGoogle Scholar
  6. Angles MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344–8353CrossRefGoogle Scholar
  7. Angles MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 34:2921–2931CrossRefGoogle Scholar
  8. Ashori A (2014) Effects of graphene on the behavior of chitosan and starch nanocomposite films. Polym Eng Sci 54:2258–2263CrossRefGoogle Scholar
  9. Ashori A, Bahrami R (2014) Modification of physico-mechanical properties of chitosan-tapioca starch blend films using nano graphene. Polym-Plast Technol Eng 53:312–318CrossRefGoogle Scholar
  10. Avella M, De Vlieger JJ, Errico ME et al (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93:467–474CrossRefGoogle Scholar
  11. Azeredo H, Mattoso LHC, Wood D et al (2009) Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J Food Sci 74:N31–N35CrossRefGoogle Scholar
  12. Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRefGoogle Scholar
  13. Barrett J (2014) Physical and biochemical strategies for improving the yield and material properties of Polyhydroxyalkanoate BiopolymersGoogle Scholar
  14. Barrett JSF, Abdala AA, Srienc F (2014) Poly(hydroxyalkanoate) Elastomers and their Graphene nanocomposites. Macromolecules 47:3926–3941. doi: 10.1021/ma500022x CrossRefGoogle Scholar
  15. Bharadwaj RK, Mehrabi AR, Hamilton C et al (2002) Structure–property relationships in cross-linked polyester–clay nanocomposites. Polymer 43:3699–3705CrossRefGoogle Scholar
  16. Bin Y, Mine M, Koganemaru A et al (2006) Morphology and mechanical and electrical properties of oriented PVA–VGCF and PVA–MWNT composites. Polymer 47:1308–1317CrossRefGoogle Scholar
  17. Boehm H-P (2010) Graphene—how a laboratory curiosity suddenly became extremely interesting. Angew Chem Int Ed 49:9332–9335CrossRefGoogle Scholar
  18. Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259CrossRefGoogle Scholar
  19. Brody AL (2006) Nano and food packaging technologies convergeGoogle Scholar
  20. Cabedo L, Giménez E, Lagaron JM et al (2004) Development of EVOH-kaolinite nanocomposites. Polymer 45:5233–5238. doi: 10.1016/j.polymer.2004.05.018 CrossRefGoogle Scholar
  21. Cabedo L, Luis Feijoo J, Pilar Villanueva M et al (2006) Optimization of biodegradable nanocomposites based on a PLA/PCL blends for food packaging applications. In: Macromolecular Symposia. Wiley Online Library, pp 191–197Google Scholar
  22. Cao Y, Feng J, Wu P (2010) Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly(lactic acid) composites. Carbon 48:3834–3839CrossRefGoogle Scholar
  23. Celzard A, Mareche JF, Furdin G, Puricelli S (2000) Electrical conductivity of anisotropic expanded graphite-based monoliths. J Phys D Appl Phys 33:3094CrossRefGoogle Scholar
  24. Chen B, Evans JRG (2005) Thermoplastic starch–clay nanocomposites and their characteristics. Carbohyd Polym 61:455–463. doi: 10.1016/j.carbpol.2005.06.020 CrossRefGoogle Scholar
  25. Chen P, Zhang L (2006) Interaction and properties of highly exfoliated soy protein/montmorillonite nanocomposites. Biomacromolecules 7:1700–1706CrossRefGoogle Scholar
  26. Chen G, Weng W, Wu D et al (2004) Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon 42:753–759CrossRefGoogle Scholar
  27. Chen W, Tao X, Xue P, Cheng X (2005) Enhanced mechanical properties and morphological characterizations of poly(vinyl alcohol)–carbon nanotube composite films. Appl Surf Sci 252:1404–1409CrossRefGoogle Scholar
  28. Chen Y, Cao X, Chang PR, Huneault MA (2008) Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohyd Polym 73:8–17CrossRefGoogle Scholar
  29. Chiu W-M, Chang Y-A, Kuo H-Y et al (2008) A study of carbon nanotubes/biodegradable plastic polylactic acid composites. J Appl Polym Sci 108:3024–3030. doi: 10.1002/app.27796 CrossRefGoogle Scholar
  30. Chung DDL (2016) A review of exfoliated graphite. J Mater Sci 51:554–568CrossRefGoogle Scholar
  31. Cyras VP, Manfredi LB, Ton-That M-T, Vázquez A (2008) Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohyd Polym 73:55–63. doi: 10.1016/j.carbpol.2007.11.014 CrossRefGoogle Scholar
  32. Dai J, Wang G, Ma L, Wu C (2015) Study on the surface energies and dispersibility of graphene oxide and its derivatives. J Mater Sci 50:3895–3907CrossRefGoogle Scholar
  33. Damm C, Münstedt H, Rösch A (2007) Long-term antimicrobial polyamide 6/silver-nanocomposites. J Mater Sci 42:6067–6073CrossRefGoogle Scholar
  34. De Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253. doi: 10.1016/j.foodres.2009.03.019
  35. de Carvalho AJF, Curvelo AAS, Agnelli JAM (2001) A first insight on composites of thermoplastic starch and kaolin. Carbohyd Polym 45:189–194. doi: 10.1016/S0144-8617(00)00315-5 CrossRefGoogle Scholar
  36. de Moura MR, Aouada FA, Avena-Bustillos RJ et al (2009) Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. J Food Eng 92:448–453CrossRefGoogle Scholar
  37. de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787CrossRefGoogle Scholar
  38. Dean K, Yu L (2005) Biodegradable protein-nanoparticles composites. Biodegradable polymers for industrial applications. Woodhead Publishing Ltd, Cambridge, UK, pp 289–312CrossRefGoogle Scholar
  39. Dervishi E, Biris AR, Watanabe F et al (2011) Few-layer nano-graphene structures with large surface areas synthesized on a multifunctional Fe:Mo:MgO catalyst system. J Mater Sci 47:1910–1919. doi: 10.1007/s10853-011-5980-z CrossRefGoogle Scholar
  40. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRefGoogle Scholar
  41. Dubief D, Samain E, Dufresne A (1999) Polysaccharide microcrystals reinforced amorphous poly(β-hydroxyoctanoate) nanocomposite materials. Macromolecules 32:5765–5771CrossRefGoogle Scholar
  42. Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76:2080–2092CrossRefGoogle Scholar
  43. Dufresne A, Vignon MR (1998) Improvement of starch film performances using cellulose microfibrils. Macromolecules 31:2693–2696CrossRefGoogle Scholar
  44. Dujardin E, Blaseby M, Mann S (2003) Synthesis of mesoporous silica by sol–gel mineralisation of cellulose nanorod nematic suspensions. J Mater Chem 13:696–699CrossRefGoogle Scholar
  45. Duncan TV, Pillai K (2014) Release of engineered nanomaterials from polymer nanocomposites: diffusion, dissolution, and desorption. ACS Appl Mater Interfaces 7:2–19CrossRefGoogle Scholar
  46. Faghihi S, Gheysour M, Karimi A, Salarian R (2014) Fabrication and mechanical characterization of graphene oxide-reinforced poly(acrylic acid)/gelatin composite hydrogels. J Appl Phys 115:083513CrossRefGoogle Scholar
  47. Fang M, Wang K, Lu H et al (2010) Single-layer graphene nanosheets with controlled grafting of polymer chains. J Mater Chem 20:1982–1992CrossRefGoogle Scholar
  48. Favier V, Cavaille JY, Canova GR, Shrivastava SC (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37:1732–1739CrossRefGoogle Scholar
  49. Guan G, Lu J, Jiang H (2016) Preparation, characterization, and physical properties of graphene nanosheets and films obtained from low-temperature expandable graphite. J Mater Sci 51:926–936CrossRefGoogle Scholar
  50. Guo J, Liu J, Yang B et al (2015) Biodegradable junctionless transistors with extremely simple structure. Electron Device Lett IEEE 36:908–910CrossRefGoogle Scholar
  51. He L, Wang H, Xia G et al (2014) Chitosan/graphene oxide nanocomposite films with enhanced interfacial interaction and their electrochemical applications. Appl Surf Sci 314:510–515CrossRefGoogle Scholar
  52. He Y, Zhang N, Gong Q et al (2012) Alginate/graphene oxide fibers with enhanced mechanical strength prepared by wet spinning. Carbohyd Polym 88:1100–1108CrossRefGoogle Scholar
  53. Helbert W, Cavaille JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: processing and mechanical behavior. Polym Compos 17:604–611CrossRefGoogle Scholar
  54. Hu AW, Fu ZH (2003) Nanotechnology and its application in packaging and packaging machinery. Packag Eng 24:22–24Google Scholar
  55. Hu W, Peng C, Luo W et al (2010) Graphene-based antibacterial paper. ACS nano 4:4317–4323CrossRefGoogle Scholar
  56. Huang H-D, Liu C-Y, Li D et al (2014) Ultra-low gas permeability and efficient reinforcement of cellulose nanocomposite films by well-aligned graphene oxide nanosheets. J Mater Chem A 2:15853–15863CrossRefGoogle Scholar
  57. Huang L, Li D-Q, Lin Y-J et al (2005) Controllable preparation of Nano-MgO and investigation of its bactericidal properties. J Inorg Biochem 99:986–993CrossRefGoogle Scholar
  58. Huang M, Yu J, Ma X (2006) High mechanical performance MMT-urea and formamide-plasticized thermoplastic cornstarch biodegradable nanocomposites. Carbohyd Polym 63:393–399CrossRefGoogle Scholar
  59. Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. BioResources 3:929–980Google Scholar
  60. Jang BZ, Zhamu A (2008) Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. J Mater Sci 43:5092–5101CrossRefGoogle Scholar
  61. Jayasena B, Reddy CD, Subbiah S (2013) Separation, folding and shearing of graphene layers during wedge-based mechanical exfoliation. Nanotechnology 24:205301. doi: 10.1088/0957-4484/24/20/205301 CrossRefGoogle Scholar
  62. Jeon GW, An J-E, Jeong YG (2012) High performance cellulose acetate propionate composites reinforced with exfoliated graphene. Compos B Eng 43:3412–3418CrossRefGoogle Scholar
  63. Jiang B, Liu C, Zhang C et al (2007) The effect of non-symmetric distribution of fiber orientation and aspect ratio on elastic properties of composites. Compos B Eng 38:24–34CrossRefGoogle Scholar
  64. Jones P, Clarke-Hill C, Shears P et al (2004) Radio frequency identification in the UK: opportunities and challenges. Int J Retail Distrib Manag 32:164–171CrossRefGoogle Scholar
  65. Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673CrossRefGoogle Scholar
  66. Kaplan DL (1998) Introduction to biopolymers from renewable resources. In: Kaplan DDL (ed) Biopolymers from renewable resources. Springer, Berlin Heidelberg, pp 1–29CrossRefGoogle Scholar
  67. Kim I-H, Jeong YG (2010) Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J Polym Sci, Part B: Polym Phys 48:850–858CrossRefGoogle Scholar
  68. Kim JY, Han SI, Hong S (2008) Effect of modified carbon nanotube on the properties of aromatic polyester nanocomposites. Polymer 49:3335–3345CrossRefGoogle Scholar
  69. Krishnan D, Kim F, Luo J et al (2012) Energetic graphene oxide: challenges and opportunities. Nano today 7:137–152CrossRefGoogle Scholar
  70. Kuan C-F, Kuan H-C, Ma C-CM, Chen C-H (2008) Mechanical and electrical properties of multi-wall carbon nanotube/poly(lactic acid) composites. J Phys Chem Solids 69:1395–1398. doi: 10.1016/j.jpcs.2007.10.060 CrossRefGoogle Scholar
  71. Kumar R, Münstedt H (2005) Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26:2081–2088CrossRefGoogle Scholar
  72. Kumar B, Castro M, Feller JF (2012) Poly(lactic acid)–multi-wall carbon nanotube conductive biopolymer nanocomposite vapour sensors. Sens Actuators B: Chem 161:621–628. doi: 10.1016/j.snb.2011.10.077 CrossRefGoogle Scholar
  73. Kvien I, Oksman K (2007) Orientation of cellulose nanowhiskers in polyvinyl alcohol. Appl Phys A 87:641–643CrossRefGoogle Scholar
  74. Lau AK-T, Hui D (2002) The revolutionary creation of new advanced materials—carbon nanotube composites. Compos B Eng 33:263–277CrossRefGoogle Scholar
  75. Le T, Lakafosis V, Lin Z et al (2012) Inkjet-printed graphene-based wireless gas sensor modules. In: 2012 IEEE 62nd electronic components and technology conference, 1003–1008Google Scholar
  76. Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited||. J Phys Chem B 102:4477–4482Google Scholar
  77. Liau SY, Read DC, Pugh WJ et al (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions. Lett Appl Microbiol 25:279–283CrossRefGoogle Scholar
  78. Li H, Li F, Wang L et al (2009) Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chem 114:547–552CrossRefGoogle Scholar
  79. Li R, Liu C, Ma J (2011) Studies on the properties of graphene oxide-reinforced starch biocomposites. Carbohyd Polym 84:631–637CrossRefGoogle Scholar
  80. Liu X, Sun Q, Wang H et al (2005) Microspheres of corn protein, zein, for an ivermectin drug delivery system. Biomaterials 26:109–115. doi: 10.1016/j.biomaterials.2004.02.013 CrossRefGoogle Scholar
  81. Liu L, Shen Z, Liang S et al (2014) Graphene for reducing bubble defects and enhancing mechanical properties of graphene/cellulose acetate composite films. J Mater Sci 49:321–328CrossRefGoogle Scholar
  82. Ljungberg N, Bonini C, Bortolussi F et al (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6:2732–2739CrossRefGoogle Scholar
  83. Lu Y, Weng L, Zhang L (2004) Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromolecules 5:1046–1051CrossRefGoogle Scholar
  84. Luduena LN, Alvarez VA, Vazquez A (2007) Processing and microstructure of PCL/clay nanocomposites. Mater Sci Eng, A 460:121–129CrossRefGoogle Scholar
  85. Luecha J, Hsiao A, Brodsky S et al (2011) Green microfluidic devices made of corn proteins. Lab Chip 11:3419–3425CrossRefGoogle Scholar
  86. Luecha J, Sozer N, Kokini JL (2010) Synthesis and properties of corn zein/montmorillonite nanocomposite films. J Mater Sci 45:3529–3537. doi: 10.1007/s10853-010-4395-6 CrossRefGoogle Scholar
  87. Luo PG, Stutzenberger FJ (2008) Nanotechnology in the detection and control of microorganisms. Adv Appl Microbiol 63:145–181CrossRefGoogle Scholar
  88. Ma X, Yu J, Wang N (2008) Glycerol plasticized-starch/multiwall carbon nanotube composites for electroactive polymers. Compos Sci Technol 68:268–273. doi: 10.1016/j.compscitech.2007.03.016 CrossRefGoogle Scholar
  89. Ma T, Chang PR, Zheng P, Ma X (2013) The composites based on plasticized starch and graphene oxide/reduced graphene oxide. Carbohyd Polym 94:63–70CrossRefGoogle Scholar
  90. Mahmoudian S, Wahit MU, Imran M et al (2012) A facile approach to prepare regenerated cellulose/graphene nanoplatelets nanocomposite using room-temperature ionic liquid. J Nanosci Nanotechnol 12:5233–5239CrossRefGoogle Scholar
  91. Mark JE (1996) Ceramic-reinforced polymers and polymer-modified ceramics. Polym Eng Sci 36:2905–2920CrossRefGoogle Scholar
  92. Mirzadeh A, Kokabi M (2007) The effect of composition and draw-down ratio on morphology and oxygen permeability of polypropylene nanocomposite blown films. Eur Polymer J 43:3757–3765. doi: 10.1016/j.eurpolymj.2007.06.014 CrossRefGoogle Scholar
  93. Mittal V (2007) Polypropylene-layered silicate nanocomposites: filler matrix interactions and mechanical properties. J Thermoplast Compos Mater 20:575–599CrossRefGoogle Scholar
  94. Mittal V (2008) Mechanical and gas permeation properties of compatibilized polypropylene–layered silicate nanocomposites. J Appl Polym Sci 107:1350–1361CrossRefGoogle Scholar
  95. Nachay K (2007) Analyzing nanotechnology. Food Technol 61:34–36Google Scholar
  96. Nie L, Liu C, Wang J et al (2015) Effects of surface functionalized graphene oxide on the behavior of sodium alginate. Carbohyd Polym 117:616–623CrossRefGoogle Scholar
  97. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669Google Scholar
  98. Pan Y, Wu T, Bao H, Li L (2011) Green fabrication of chitosan films reinforced with parallel aligned graphene oxide. Carbohyd Polym 83:1908–1915CrossRefGoogle Scholar
  99. Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320:248–258CrossRefGoogle Scholar
  100. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRefGoogle Scholar
  101. Park H-M, Li X, Jin C-Z et al (2002) Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol Mater Eng 287:553–558CrossRefGoogle Scholar
  102. Petersson L, Oksman K (2006) Preparation and properties of biopolymer-based nanocomposite films using microcrystalline cellulose. In: ACS symposium series. Oxford University Press, pp 132–150Google Scholar
  103. Petersen K, Væggemose Nielsen P, Bertelsen G et al (1999) Potential of biobased materials for food packaging. Trends Food Sci Technol 10:52–68. doi: 10.1016/S0924-2244(99)00019-9 CrossRefGoogle Scholar
  104. Pinto AM, Cabral J, Tanaka DAP et al (2013a) Effect of incorporation of graphene oxide and graphene nanoplatelets on mechanical and gas permeability properties of poly(lactic acid) films. Polym Int 62:33–40CrossRefGoogle Scholar
  105. Pinto AM, Moreira S, Gonçalves IC et al (2013b) Biocompatibility of poly(lactic acid) with incorporated graphene-based materials. Colloids Surf, B 104:229–238CrossRefGoogle Scholar
  106. Podsiadlo P, Choi S-Y, Shim B et al (2005) Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromol 6:2914–2918CrossRefGoogle Scholar
  107. Pötschke P, Abdel-Goad* M, Pegel S et al (2009) Comparisons among electrical and rheological properties of melt-mixed composites containing various carbon nanostructures. J Macromol Sci Part A 47:12–19Google Scholar
  108. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25CrossRefGoogle Scholar
  109. Qi L, Xu Z, Jiang X et al (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohyd Res 339:2693–2700CrossRefGoogle Scholar
  110. Qian C, Sun J, Yang J, Gao Y (2015) Flexible organic field-effect transistors on biodegradable cellulose paper with efficient reusable ion gel dielectrics. RSC Adv 5:14567–14574CrossRefGoogle Scholar
  111. Ray SS, Bandyopadhyay J, Bousmina M (2007) Thermal and thermomechanical properties of poly [(butylene succinate)-co-adipate] nanocomposite. Polym Degrad Stab 92:802–812CrossRefGoogle Scholar
  112. Ray SS, Yamada K, Okamoto M, Ueda K (2003) New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer 44:857–866CrossRefGoogle Scholar
  113. Rhim J-W, Ng PKW (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47:411–433. doi: 10.1080/10408390600846366 CrossRefGoogle Scholar
  114. Rhim J-W, Lee J-H, Kwak H-S (2005) Mechanical and water barrier properties of soy protein and clay mineral composite films. Food Sci Biotechnol 14:112–116Google Scholar
  115. Rouf TB, Kokini JL (2016) Biodegradable biopolymer–graphene nanocomposites. J Mater Sci 51:9915–9945CrossRefGoogle Scholar
  116. Ruan D, Zhang L, Zhang Z, Xia X (2004) Structure and properties of regenerated cellulose/tourmaline nanocrystal composite films. J Polym Sci Part B: Polym Phys 42:367–373CrossRefGoogle Scholar
  117. Ruiz-Garcia L, Lunadei L (2011) The role of RFID in agriculture: applications, limitations and challenges. Comput Electron Agric 79:42–50CrossRefGoogle Scholar
  118. Samir MASA, Alloin F, Sanchez J-Y, Dufresne A (2004) Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45:4149–4157CrossRefGoogle Scholar
  119. Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohyd Polym 71:235–244CrossRefGoogle Scholar
  120. Sarac A, Absi N, Dauzère-Pérès S (2010) A literature review on the impact of RFID technologies on supply chain management. Int J Prod Econ 128:77–95CrossRefGoogle Scholar
  121. Shokrieh MM, Esmkhani M, Shahverdi HR, Vahedi F (2013) Effect of graphene nanosheets (GNS) and graphite nanoplatelets (GNP) on the Mechanical properties of epoxy nanocomposites. Sci Adv Mater 5:260–266CrossRefGoogle Scholar
  122. Shukla R, Cheryan M (2001) Zein: the industrial protein from corn. Ind Crops Prod 13:171–192CrossRefGoogle Scholar
  123. Si H, Luo H, Xiong G et al (2014) One-step in situ biosynthesis of graphene oxide-bacterial cellulose nanocomposite hydrogels. Macromol Rapid Commun 35:1706–1711CrossRefGoogle Scholar
  124. Sinclair RG (1996) The case for polylactic acid as a commodity packaging plastic. J Macromol Sci Part A 33:585–597. doi: 10.1080/10601329608010880 CrossRefGoogle Scholar
  125. Singh V, Joung D, Zhai L et al (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271CrossRefGoogle Scholar
  126. Song K, Zhao X, Xu Y, Liu H (2013) Modification of graphene oxide via photo-initiated grafting polymerization. J Mater Sci 48:5750–5755CrossRefGoogle Scholar
  127. Sriupayo J, Supaphol P, Blackwell J, Rujiravanit R (2005) Preparation and characterization of α-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment. Carbohyd Polym 62:130–136CrossRefGoogle Scholar
  128. Stanier DC, Patil AJ, Sriwong C et al (2014) The reinforcement effect of exfoliated graphene oxide nanoplatelets on the mechanical and viscoelastic properties of natural rubber. Compos Sci Technol 95:59–66CrossRefGoogle Scholar
  129. Staudenmaier L (1898) Verfahren zur darstellung der graphitsäure. Ber Dtsch Chem Ges 31:1481–1487CrossRefGoogle Scholar
  130. Svagan AJ, Hedenqvist MS, Berglund L (2009) Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Compos Sci Technol 69:500–506CrossRefGoogle Scholar
  131. Szabó T, Berkesi O, Forgó P et al (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18:2740–2749. doi: 10.1021/cm060258
  132. Terzopoulou Z, Kyzas GZ, Bikiaris DN (2015) Recent advances in nanocomposite materials of graphene derivatives with polysaccharides. Materials 8:652–683CrossRefGoogle Scholar
  133. Thakur S, Karak N (2013) Bio-based tough hyperbranched polyurethane–graphene oxide nanocomposites as advanced shape memory materials. RSC Adv 3:9476–9482CrossRefGoogle Scholar
  134. Thellen C, Orroth C, Froio D et al (2005) Influence of montmorillonite layered silicate on plasticized poly(l-lactide) blown films. Polymer 46:11716–11727. doi: 10.1016/j.polymer.2005.09.057 CrossRefGoogle Scholar
  135. Tian M, Qu L, Zhang X et al (2014) Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers. Carbohyd Polym 111:456–462CrossRefGoogle Scholar
  136. Uyama H, Kuwabara M, Tsujimoto T et al (2003) Green nanocomposites from renewable resources: plant oil-clay hybrid materials. Chem Mater 15:2492–2494CrossRefGoogle Scholar
  137. Vanderroost M, Ragaert P, Devlieghere F, De Meulenaer B (2014) Intelligent food packaging: the next generation. Trends Food Sci Technol 39:47–62CrossRefGoogle Scholar
  138. Villmow T, Pötschke P, Pegel S et al (2008) Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer 49:3500–3509. doi: 10.1016/j.polymer.2008.06.010 CrossRefGoogle Scholar
  139. Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521–2527CrossRefGoogle Scholar
  140. Wang H, Qiu Z (2011) Crystallization behaviors of biodegradable poly(l-lactic acid)/graphene oxide nanocomposites from the amorphous state. Thermochim Acta 526:229–236CrossRefGoogle Scholar
  141. Wang H, Qiu Z (2012) Crystallization kinetics and morphology of biodegradable poly(l-lactic acid)/graphene oxide nanocomposites: influences of graphene oxide loading and crystallization temperature. Thermochim Acta 527:40–46CrossRefGoogle Scholar
  142. Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71:R107–R116. doi: 10.1111/j.1750-3841.2006.00195.x CrossRefGoogle Scholar
  143. William S, Hummers JR, Offeman RE, others (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339Google Scholar
  144. Xu Y, Zhou J, Hanna MA (2005) Melt-intercalated starch acetate nanocomposite foams as affected by type of organoclay 1. Cereal Chem 82:105–110CrossRefGoogle Scholar
  145. Yadav M, Rhee KY, Jung IH, Park SJ (2013) Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film. Cellulose 20:687–698CrossRefGoogle Scholar
  146. Yadav M, Rhee KY, Park SJ (2014) Synthesis and characterization of graphene oxide/carboxymethylcellulose/alginate composite blend films. Carbohyd Polym 110:18–25CrossRefGoogle Scholar
  147. Yang J-H, Lin S-H, Lee Y-D (2012) Preparation and characterization of poly(l-lactide)–graphene composites using the in situ ring-opening polymerization of PLLA with graphene as the initiator. J Mater Chem 22:10805–10815CrossRefGoogle Scholar
  148. Yasmin A, Luo J-J, Daniel IM (2006) Processing of expanded graphite reinforced polymer nanocomposites. Compos Sci Technol 66:1182–1189CrossRefGoogle Scholar
  149. Yoon JT, Jeong YG, Lee SC, Min BG (2009) Influences of poly(lactic acid)-grafted carbon nanotube on thermal, mechanical, and electrical properties of poly(lactic acid). Polym Adv Technol 20:631–638. doi: 10.1002/pat.1312 CrossRefGoogle Scholar
  150. Yoon S-Y, Deng Y (2006) Clay–starch composites and their application in papermaking. J Appl Polym Sci 100:1032–1038CrossRefGoogle Scholar
  151. Yoon OJ, Jung CY, Sohn IY et al (2011) Nanocomposite nanofibers of poly(d, l-lactic-co-glycolic acid) and graphene oxide nanosheets. Compos A Appl Sci Manuf 42:1978–1984CrossRefGoogle Scholar
  152. Yu J, Cui G, Wei M, Huang J (2007) Facile exfoliation of rectorite nanoplatelets in soy protein matrix and reinforced bionanocomposites thereof. J Appl Polym Sci 104:3367–3377. doi: 10.1002/app.25969 CrossRefGoogle Scholar
  153. Zeng H, Gao C, Wang Y et al (2006) In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: mechanical properties and crystallization behavior. Polymer 47:113–122CrossRefGoogle Scholar
  154. Zhang X, Liu X, Zheng W, Zhu J (2012) Regenerated cellulose/graphene nanocomposite films prepared in DMAC/LiCl solution. Carbohyd Polym 88:26–30CrossRefGoogle Scholar
  155. Zheng W, Lu X, Wong S-C (2004) Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J Appl Polym Sci 91:2781–2788CrossRefGoogle Scholar
  156. Zheng P, Ma T, Ma X (2013) Fabrication and properties of starch-grafted graphene nanosheet/plasticized-starch composites. Ind Eng Chem Res 52:14201–14207CrossRefGoogle Scholar
  157. Zhou X, Shin E, Wang KW, Bakis CE (2004) Interfacial damping characteristics of carbon nanotube-based composites. Compos Sci Technol 64:2425–2437. doi: 10.1016/j.compscitech.2004.06.001 CrossRefGoogle Scholar
  158. Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Food SciencePurdue UniversityWest LafayetteUSA
  2. 2.Department of Food SciencePurdue UniversityWest LafayetteUSA

Personalised recommendations