Skip to main content

Chitosan-Based Bionanocomposite for Packaging Applications

  • Chapter
  • First Online:
Bionanocomposites for Packaging Applications
  • 1271 Accesses

Abstract

Concerns on environmental waste problems caused by non-biodegradable petrochemical-based plastic packaging materials as well as the consumers demand for high-quality food products have caused an increasing interest in developing biodegradable packaging materials like polysaccharides. Out of these polysaccharides, Chitosan has created its greater interest due to non-toxic, antibacterial behaviour, film-forming abilities and low permeability to oxygen, poor thermal and mechanical properties restricted its wide spread applications for packaging. However, reinforcement of various nanostructured materials shall increase the mechanical, thermal and gas barrier properties of chitosan without disturbing the biodegradable behaviour. This chapter summarizes different characterization techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) of chitosan-based bionanocomposites. For keeping on the packaging applications of the materials, the important properties such as thermal and mechanical gas barrier and antimicrobial properties of chitosan-based bionanocomposites are discussed. The main focus of this chapter is to establish the packaging applications of chitosan-based bionanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aider M (2010) Chitosan application for active bio-based films production andpotential in the food industry: review. LWT Food Sci Technol 43:837–842

    Article  Google Scholar 

  • Alam R, Khan MA et al (2008) Study on the physico-mechanical properties of photo-cured chitosan films with oligomer and acrylate monomer. J Polym Environ 16:213–219

    Article  Google Scholar 

  • An J (2010) Preparation of chitosan-graft-(methyl methacrylate)/Ag nanocomposite with antimicrobial activity. Polym Int 59:62–70

    Article  Google Scholar 

  • Appendini P et al (2002) Review of antimicrobial food packaging. Innovative Food Sci Emerg Technol 3:113–126

    Article  Google Scholar 

  • Azizi Samir MAS et al (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6:612–626

    Article  Google Scholar 

  • Barkoula NM et al (2016) Mechanical and thermomechanicalproperties of nanocomposites. In Jyotishkumar Parameswaranpillai NH, Kurian T, Yu Y (eds) Nanocomposite materials: synthesis, properties andapplications. CRC Press, Boca Raton

    Google Scholar 

  • Benhabiles MS, Salah R, Lounici H et al (2012) Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloid 29:48–56

    Article  Google Scholar 

  • Bezic N et al (2003) Composition and antimi-crobial activity of Achillea clavennae L. essential oil. Phytotherapy Research. 17:1037–1040

    Article  Google Scholar 

  • Bodin A, Ahrenstedt L et al (2007) Modification of nanocellulose with a xyloglucan–RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromol 8:3697–3704

    Article  Google Scholar 

  • Butnaru E et al (2016) Poly (Vinyl alcohol) chitosan/Montmorillonite nanocomposites for food packaging applications: Influence of Montmorillonite content. High Perform Polym 28:1124–1138

    Article  Google Scholar 

  • Caner C et al (1998) Chitosan film mechanical and permeation properties as affected by acid, plasticizer, and storage. J Food Sci 63:1049–1053

    Article  Google Scholar 

  • Caro N et al (2016) Novel active packaging based on films of chitosan and chitosan/quinoa protein printed with chitosan-tri polyphosphate-thymal nanoparticles via thermal ink-jet printing. Food Hydrocolloids 52:520–532

    Article  Google Scholar 

  • Chen MC et al (1996) G.H.C. Yeh, B.H. Chiang, Antimicrobial and physicochemical properties of methylcellulose and chitosan films containing a preservative. J. Food Proc Preserv 20:379–390

    Article  Google Scholar 

  • Chung TW, Lu YF, Wang HY et al (2003) Growth of human endothelial cells on different concentrations of Gly-Arg-Asp grafted chitosan surface. Artif Organs 27:155–161

    Article  Google Scholar 

  • Coma V, MartiaL-Gros R et al (2002) Edible antimicrobial films based on chitosan matrix. J Food Sci 67:1162–1169

    Article  Google Scholar 

  • Costa C et al (2011) Bio-based nanocom-posite coating to preserve quality of Fiordilatte cheese. Int J Food Microbiol 148:164–167

    Google Scholar 

  • Croisier F et al (2013) Chitosan-based biomaterials for tissue engineering. Eur Polymer J 49:780–792

    Article  Google Scholar 

  • Das S, Kisku SK et al (2014) Thermal and oxygen barrier properties of chitosan bionanocomposites by reinforcement of calcium carbonate nanopowder. J. Mater Sci. Techn. 30:791–795

    Article  Google Scholar 

  • Dash S, Swain SK (2013a) Effect of nanoboron nitride on the physical and chemical properties of soy protein. Compos Sci Technol 84:39–43

    Article  Google Scholar 

  • Dash S, Swain SK (2013b) Synthesis of thermal and chemical resistant oxygen barrier starch with reinforcement of nano silicon carbide. Carbohydr Polym 97:758–763

    Article  Google Scholar 

  • De Silva RT et al (2017) Nano-MgO reinforced chitosan nanocomposites for high performance packaging applications with improved mechanical, thermal and barrier properties. Carbohydr Polym 157:739–747

    Article  Google Scholar 

  • Demitri C et al (2016) Nanostructured active chitosan-based films for food packaging applications: Effect of graphene stacks on mechanical properties. Measurement 90:418–423

    Article  Google Scholar 

  • Dumitriu S. (2002). Polymeric biomaterials. Marcel Dekker, Inc, New York

    Google Scholar 

  • Dutta K, Tripathi S et al (2009) Perspectives for chitosanbased antimicrobial films in food applications. Food Chem 114:1173–1182

    Article  Google Scholar 

  • Gammariello D et al (2011) Bio-basednanocomposite coating to preserve quality of Fior di latte cheese. J Dairy Sci 94:5298–5304

    Article  Google Scholar 

  • Giannakas A et al (2017) A novel solution blending method for using olive oil and corn oil as plastisizers in chitosan based organo clay nanocomposites. Carbohydr Polym 157:550–557

    Article  Google Scholar 

  • Helbert W et al (1994) Oriented growth of V amylase n-butanol crystals on cellulose. Carbohydr Polym 24:119–122

    Article  Google Scholar 

  • Hosseini SF et al (2015) Fabrication of bionanocomposites films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocolloids 44:172–182

    Article  Google Scholar 

  • Imam SH et al (2012) Utilization of biobased polymers in food packaging: assessment of materials, production and commercialization. In: Yam KL, Lee DS (eds) Emerging food packaging technologies principles and practice. Wood head Publishing Limited, Cambridge, pp 435–468

    Chapter  Google Scholar 

  • Incoronato AL et al (2010) Active systems based on silver/montmorillonite nanoparticles embedded intobio-based polymer matrices for packaging applications. J Food Prot 73:2256–2262

    Article  Google Scholar 

  • Incoronato AL et al (2011) Agar hydrogel with silver nanoparticles to prolong the shelf life of Fior di Latte cheese. J Dairy Sci 94:1697–1704

    Article  Google Scholar 

  • Jiang Y et al (2001) Effects of chitosan coating on postharvest life and quality of long an fruit. Food Chem 73:139–143

    Article  Google Scholar 

  • Johnston MD, Brown MH (2002) An investigation into the changed physiological state of Vibrio bacteria as a survival mechanism in response to coldtemperatures and studies on their sensitivity to heating and freezing. J Appl Microbiol 92:1066–1077

    Article  Google Scholar 

  • Kanatt SR, Rao MS et al (2012) Active chitosan polyvinyl alcohol films with natural extracts. Food Hydrocolloid 29:290–297

    Article  Google Scholar 

  • Khan RA et al (2010) Production and properties of nanocellulose reinforced methylcellulose based biodegradable films. J Agric Food Chem 58:7878–7885

    Article  Google Scholar 

  • Khan A, Khan RA et al (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90:1601–1608

    Article  Google Scholar 

  • Kisku SK, Das S et al (2014) Dispersion of sic nanoparticles in cellulose for study of tensile, thermal and oxygen barrier properties. Carbohydr Polym 99:306–310

    Article  Google Scholar 

  • Kondo T et al (1996) The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Polymer 37:393–399

    Article  Google Scholar 

  • Kumar MNS, Yaakob Z et al (2011). Biobased materials in foodpackaging applications. In Handbook of bioplastics and biocompositesengineering applications. Wiley, New York, pp 121–159

    Google Scholar 

  • Kurita K (2006) chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8:203–226

    Article  Google Scholar 

  • Lavorgna M et al (2014) MMT-supported Ag nanoparticles for chitosan nanocomposites: structural properties and antibacterial activity. Carbohydr Polym 102:385–392

    Article  Google Scholar 

  • Leceta I, Guerrero P et al (2013a) Characterization and antimicrobial analysis of chitosan-based films. J Food Eng 116:889–899

    Article  Google Scholar 

  • Leceta I, Guerrero P, Ibarburu I et al (2013b) Characterization and antimicrobial analysis of chitosan-based films. J Food Eng 11:889–899

    Article  Google Scholar 

  • Li Q et al (2011) Supramolecular structure characterization of molecularly thin cellulose I nanoparticles. Biomacromol 12:650–659

    Article  Google Scholar 

  • Muzzarelli RAA, Boudrant J et al (2012) Current views on fungal chitin/chitosan, human chitinases, foodpreservation, glucans, pectins and inulin: a tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr Polym 87:995–1012

    Article  Google Scholar 

  • Nigmatullin R et al (2008) Polymer-layered silicate nanocomposites in the design of antimicrobial materials. J Mater Sci 43:5728–5733

    Article  Google Scholar 

  • Nikonenko NA et al (2005) Spectroscopic manifestation of stretching vibrations of glycosidic linkage in polysaccharides. J Mol Struct 752:20–24

    Article  Google Scholar 

  • Nikonenko NA, Buslov DK et al (2000) Investigation of stretching vibrations of glycosidic linkages in disaccharides and polysaccharides with use of IR spectra deconvolution. Biopolymers 57:257–262

    Article  Google Scholar 

  • Noshirvani N et al (2017) Novel active packaging based on carboxymethyl cellulose-chitosan-ZnO NPs nanocomposite for increasing the shelf life of bread. 11:106–114

    Google Scholar 

  • Ogawa K et al (1994) New polymorph of chitosan. Macromolecules 17:973–975

    Article  Google Scholar 

  • Persico P et al (2009) Nanocomposite polymer films containing carvacrol for antimicrobial active packaging. Polym Eng Sci 49:1447–1455

    Article  Google Scholar 

  • Petersen K, Nielsen P, Bertelsen G, Lawther M, Olsen MB et al (1999) Potential of biobased materials for food packaging. Trends Food Sci Technol 10:52–68

    Article  Google Scholar 

  • Petrova VA et al (2012) Specific features of chitosan-montmorillonite interaction in anaqueous acid solution and properties of related composite films. Polyme Sci Ser A 54:224–230

    Article  Google Scholar 

  • Rao MS, Kanatt SR et al (2010) Chitosan and guar gum composite films: preparation, physical, mechanical and antimicrobial properties. Carbohydr Polym 82:1243–1247

    Article  Google Scholar 

  • Rhim JW et al (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822

    Article  Google Scholar 

  • Rhim JW, Park HM et al (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652

    Article  Google Scholar 

  • Sánchez-González L et al (2010a) Physical properties of edible chitosan films containing bergamot essential oiland their inhibitory action on Penicillium italicum. Carbohyd Polym 82:277–283

    Article  Google Scholar 

  • Sánchez-González L et al (2010b) Physical properties of edible chitosan films containing bergamot essential oiland their inhibitory action on Penicillium italicum. Carbohydr Polym 82:277–283

    Article  Google Scholar 

  • Sánchez-González L (2011) Effect of essential oils on properties of film forming emulsions and films based on hydroxypropylmethylcellulose and chitosan. J Food Eng 105:246–253

    Article  Google Scholar 

  • Shahbazi M et al (2017) Characterization of nanocomposite film based on chitosan intercalated in clay platelets by electron beam irradiation. Carbohydr Polym 157:226–235

    Article  Google Scholar 

  • Siracusa V, Rocculi P, Romani S et al (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643

    Article  Google Scholar 

  • Sorrentino A, Gorrasi G et al (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95

    Article  Google Scholar 

  • Suppakul MJ et al (2003) Active packaging technologies with an emphasis on antimicrobial packaging and its applications. J Food Sci 68:408–420

    Article  Google Scholar 

  • Swain SK, Dash S et al (2014a) Effect of zirconium oxide nanopowders on the thermal, chemical and gas barrier properties of starch. Mater Sci Semicond Process 23:115–121

    Article  Google Scholar 

  • Swain SK, Patra SK et al (2014b) Study of thermal, oxygen-barrier, fire-retardant and biodegradable properties of starch bionanocomposites. Polyme Compos 35:1238–1243

    Article  Google Scholar 

  • Szymanska E et al (2015) Stability of chitosan—a challenge for pharmaceutical and biomedical applications. Marine Drugs 13:1819–1846

    Article  Google Scholar 

  • Travan A et al (2011) Silver-polysaccharide nanocomposite antimicrobial coatings for methacrylic thermosets. Acta Biomater 7:337–346

    Article  Google Scholar 

  • Tripathi S, Mehrotra GK et al (2008) Chitosan based antimicrobial films for food packaging applications. E-Polymers 8:1082–1088

    Article  Google Scholar 

  • Tsigos I, Martinou A et al (2000) Chitin deacetylases: new: versatile tools in biotechnology. Trends Biotechnol 18:305–312

    Article  Google Scholar 

  • Van den Broek LA, Knoop RJ et al (2015) Chitosan films and blends for packaging material. Carbohyd Polym 116:237–242

    Article  Google Scholar 

  • Vartiainen J et al (2010) Bio-hybrid nanocomposite coatings from sonicated chitosan and nanoclay. J Appl Polym Sci 116:3638–3647

    Google Scholar 

  • Wang SF, Shen L (2005) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromol 6:3067–3072

    Article  Google Scholar 

  • Wang H et al (2011) Formation and properties of chitosan cellulose nanocrystal polyelectrolyte macroion complexes for drug delivery applications. Biomacromol 12:1585–1593

    Article  Google Scholar 

  • Yen MT, Yang JH et al (2008) Antioxidant properties of chitosan from crab shells. Carbohyd Polym 74:840–844

    Article  Google Scholar 

  • Youssef AM (2013) Polymer Nanocomposites as a new trend for packaging applications. Polym Plastic Technol Eng 52:635–660

    Article  Google Scholar 

  • Youssef AM (2014) Chitosan nanocomposite films based on Ag-NP and AU-NP biosynthesis by Bacillus subtilis as packaging materials. International J Biological Macromol 69:185–191

    Article  Google Scholar 

  • Youssef AM et al (2013) Morphological and antibacterial properties of modified paper by PS nanocomposites for packaging applications. Carbohydr Polym 98:1166–1172

    Article  Google Scholar 

  • Youssef AM et al (2014) Morphological studies of polyaniline nanocomposite based mesostructured TiO 2 nanowires as conductive packaging materials. RSC Adv 4:6811–6820

    Article  Google Scholar 

Download references

Acknowledgements

Authors express their thanks to Department of Science and Technology, Government of India for awarding Inspire Fellowship to Kalyani Prusty for carrying out her doctoral degree.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarat K. Swain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Swain, S.K., Prusty, K. (2018). Chitosan-Based Bionanocomposite for Packaging Applications. In: Jawaid, M., Swain, S. (eds) Bionanocomposites for Packaging Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-67319-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67319-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67318-9

  • Online ISBN: 978-3-319-67319-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics