Skip to main content

Proteins as Agricultural Polymers for Packaging Production

  • Chapter
  • First Online:
Bionanocomposites for Packaging Applications

Abstract

Proteins are natural heteropolymers and are most vital nutrients essential for human survival and life. Proteins generally exist in nature either in the form of fibrous proteins (water insoluble) or in the form of globular proteins (water soluble). Proteins are also available abundant in nature and are biodegradable. Proteins provide a broad spectrum of functional and structural properties because of the presence of polar and nonpolar amino acids and are therefore ideal raw materials for the production of bioplastics used for packaging materials. At present, a number of protein-based films are produced for the purpose of packaging of food. The protein based films possess some unique characteristics such as; excellent optical properties (gloss and transparency), are good fat barriers, at low and intermediate humidity possess an excellent oxygen and organic vapor barrier and have moderate mechanical properties. The contents of this chapter are as follows: introduction, proteins for packaging materials, processing methods, shaping agents, and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboagye Y, Stanley DW (1985) Texturization of peanut proteins by surface film formation. 1. Influence of process parameters on film forming properties. Can Inst Food Sci Technol J 18:12–20

    Article  Google Scholar 

  • Allen L, Nelson AI, Steinberg MP, McGill JN (1963) Edible corn-carbohydrate food coatings. 1. Development and physical testing of a starch-algin coating. Food Technol 17:1437–1441

    Google Scholar 

  • Anker CA, Foster GA, Loader MA (1972) Wheat gluten films. U.S. patent 3,653,925

    Google Scholar 

  • Arcan I, Yemenicioglu A (2011) Incor-porating phenolic compounds opens a new per-spective to use zein as flexible bioactive packaging materials. Food Res Int 44(2):550–556

    Article  Google Scholar 

  • Ashes JR, Cook LJ, Sidhu GS (1984) Effect of dietary cholesterol protected against ruminal hydrogenation on the plasma cholesterol and liver of sheep. Lipids 19:159–163

    Article  Google Scholar 

  • Ashley RJ (1985) Permeability and plastic packagings. In: Comyn J (ed) Polymer permeability. Elsevier Applied Science, London, pp 269–308

    Chapter  Google Scholar 

  • Avena-Bustillos RJ, Krochta JM (1993) Water vapor permeability of caseinate-based films as affected by pH, calcium cross-linking and lipid content. J Food Sci 58:904–907

    Article  Google Scholar 

  • Aydt TP, Weller CL, Testin RF (1991) Mechanical and barrier properties of edible corn and wheat protein films. Trans ASAE 34:207–211

    Article  Google Scholar 

  • Ayhllon-Meixueiro F, Vaca-Garcia C, Silvestre F (2000) Biodegradable films from isolate of sunflower (Helianthus annuus) proteins. J Agric Food Chem 48:3032–3036

    Article  Google Scholar 

  • Bakker M (1986) Wiley encyclopedia of packaging technology. Wiley, New York

    Google Scholar 

  • Baker RC, Darfler JM, Vadehra DV (1972) Prebrowned fried chicken. 2. Evaluation of predust materials. Poult Sci 51:1220–1222

    Article  Google Scholar 

  • Balaguer MP, Gómez-Estaca J, Gavara R, Hernández-Muñoz P (2011) Functional properties of bioplastics made from wheat gliadins modified with cinnamaldehyde. J Agric Food Chem 59:6689–6695. doi:10.1021/jf200477a

    Article  Google Scholar 

  • Balaguer MP, Gomez-Estaca J, Cerisuelo JP, Gavara R, Hernandez-Munoz P (2014) Effect of thermo-pressing temperature on the functional properties of bioplastics made from a renewable wheat gliadin resin. LWT–Food Science and Technology 56:161–167

    Article  Google Scholar 

  • Balassa LL, Fanger GO (1971) Microencapsulation in the food industry. CRC Crit Rev Food Technol 2:245–265

    Article  Google Scholar 

  • Banerjee R, Chen H, Wu J (1996) Milk protein-based edible film mechanical strength changes due to ultrasound process. J Food Sci 61:824–828

    Article  Google Scholar 

  • Banker GS (1966) Film coating theory and practice. J Pharm Sci 55:81–89

    Article  Google Scholar 

  • Barone JR, Schmidt WF, Liebner CFE (2005) Thermally processed keratin films. J Appl Polym Sci 97:1644–1651. doi:10.1002/app.21901

    Article  Google Scholar 

  • Bates RP, Wu LC (1975) Protein quality of soy protein-lipid films (yuba) and derived fractions. J. Food Sci. 40:425–426

    Google Scholar 

  • Belyamani I, Prochazka F, Assezat G (2014) Production and characterization of sodium caseinate edible films made by blownfilm extrusion. J Food Eng 121:39–47

    Article  Google Scholar 

  • Bietz JA, Lookhart GL (1996) Properties and non-food potential of gluten. Cereal Foods World 41:376–382

    Google Scholar 

  • Blanco-Pascual N, Fernández-Martín F, Montero MP (2013) Effect of different protein extracts from Dosidicus gigas muscle coproducts on edible films development. Food Hydrocolloids 33:118–131

    Article  Google Scholar 

  • Bourtoom T (2008) Edible films and coatings: characteristics and properties. Int Food Res J 15(3):237–248

    Google Scholar 

  • Brandenburg AH, Weller CL, Testin RF (1993) Edible films and coatings from soy protein. J Food Sci 58:1086–1089

    Article  Google Scholar 

  • Butler MF, Ng YF, Pudney PDA (2003) Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. J Polym Sci, Part A: Polym Chem 41:3941–3953. doi:10.1002/pola.10960

    Article  Google Scholar 

  • Cao N, Fu YH, He JH (2007) Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid. Food Hydrocolloids 21:575–584. doi:10.1016/j.foodhyd.2006.07.001

    Article  Google Scholar 

  • Carvalho RA, Grosso CRF, Sobral PJA (2008) Effect of chemical treatment on the mechanical properties, water vapour permeability and sorption isotherms of gelatin-based films. Packag Technol Sci 21:165–169. doi:10.1002/pts.792

    Article  Google Scholar 

  • Cavallaro JF, Kemp PD, Kraus KH (1994) Collagen fabrics as biomaterials. Biotechnol Bioeng 43:781–791

    Article  Google Scholar 

  • Cherian G, Chinachoti P (1996) 2H and 17O nuclear magnetic resonance study of water in gluten in the glassy and rubbery state. Cereal Chem 73:618–624

    Google Scholar 

  • Cherian G, Gennadios A, Weller C, Chinachoti P (1995) Thermomechanical behavior of wheat gluten films: effect of sucrose, glycerin, and sorbitol. Cereal Chem 72:1–6

    Google Scholar 

  • Ciannamea EM, Stefani PM, Ruseckaite RA (2014) Physical and mechanical properties of compression molded and solution casting soybean protein concentrate based films. Food Hydrocoll 38:193–204. doi:10.1016/j.foodhyd.2013.12.013

    Article  Google Scholar 

  • Cole MS (1969) Method for coating dehydrated food. U.S. patent 3,479,191

    Google Scholar 

  • Courts A (1977) Uses of collagen in edible products. In: Ward AG, Courts A (eds) The science and technology of gelatin. Academic Press, New York, pp 395–412

    Google Scholar 

  • Cunningham P, Ogale A, Dawson P, Acton J (2000) Tensile properties of soy protein isolate films produced by a thermal compaction technique. J Food Sci 65:668–671. doi:10.1111/j.1365-2621.2000.tb16070.x

    Article  Google Scholar 

  • Cuq B, Aymard C, Cuq JL, Guilbert S (1995) Edible packaging films based on fish myofibrillar proteins: formulation and functional properties. J Food Sci 60:1369–1374. doi:10.1111/j.1365-2621.1995.tb04593.x

    Article  Google Scholar 

  • Cuq B, Gontard N, Cuq JL, Guilbert S (1996a) Stability of myofibrillar protein-based biopackagings during storage. Lebensm Wiss Technol 29:344–348

    Article  Google Scholar 

  • Cuq B, Gontard N, Cuq JL, Guilbert S (1996b) Functional properties of myofibrillar protein-based biopackagings as affected by film thickness. J Food Sci 61:580–584

    Article  Google Scholar 

  • Cuq B, Gontard N, Cuq JL, Guilbert S (1996c) A rheological model for the mechanical properties of myofibrillar protein-based films. J Agric Food Chem 44:1116–1122

    Article  Google Scholar 

  • Cuq B, Gontard N, Aymard C, Guilbert S (1997a) Effect of moisture content and temperature on the main functional properties of myofibrillar protein-based films. Polym Gels Networks 5:1–15

    Article  Google Scholar 

  • Cuq B, Gontard N, Cuq JL, Guilbert S (1997b) Selected functional properties of myofibrillar protein-based films as affected by hydrophilic plasticizers. J Agric Food Chem 45:622–626

    Article  Google Scholar 

  • Cuq B, Gontard N, Guilbert S (1997c) Thermoplastic properties of fish myofibrillar proteins: application to biopackaging fabrication. Polymer 38(16):4071–4078

    Article  Google Scholar 

  • Cuq B, Gontard N, Guilbert S (1998a) Proteins as agricultural polymers for packaging production. Cereal Chem 75:1–9. doi:10.1094/cchem.1998.75.1.1

    Article  Google Scholar 

  • Cuq B, Gontard N, Guilbert S (1998b) Proteins as agricultural polymers for packaging production. Cereal Chem 74:1–9

    Google Scholar 

  • Dangaran K, Tomasula PM, Qi P (2009) Structure and function of protein-based edible films and coatings. In: Embuscado ME, Huber HC (eds) Edible films and coatings for food application. Springer, New York, pp 25–56

    Chapter  Google Scholar 

  • Daniels R (1973) Edible coatings and soluble packaging. Noyes Data Corporation, Park Ridge

    Google Scholar 

  • de Carvalho RA, Grosso CRF (2004) Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde. Food Hydrocolloids 18:717–726. doi:10.1016/j.foodhyd.2003.10.005

    Article  Google Scholar 

  • di Gioia L, Guilbert S (1999) Corn protein-based thermoplastic resins: effect of some polar and amphiphilic plasticizers. J Agric Food Chem 47:1254–1261

    Article  Google Scholar 

  • Donhowe IG, Fennema O (1993) The effects of solution composition and drying temperature on crystallinity, permeability and mechanical properties of methylcellulose films. J Food Process Preserv 17:231–246

    Article  Google Scholar 

  • edible films. Food Hydrocolloids 41:86–94

    Google Scholar 

  • Farris S, Introzzi L, Piergiovanni L (2009) Evaluation of a bio-coating as a solution to improve barrier, friction and optical properties of plastic films. Packag Technol Sci 22:69–83. doi:10.1002/pts.826

    Article  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  • Fukushima D, Van Buren J (1970) Mechanisms of protein insolubilization during the drying of soy milk. Role of disulfide and hydrophobic bonds. Cereal Chem 47:687–696

    Google Scholar 

  • Gennadios A, Weller CL (1990) Edible films and coatings from wheat and corn proteins. Food Technol 44:63–69

    Google Scholar 

  • Gastaldi E, Chalier P, Guillemin A, Gontard N (2007) Microstructure of protein-coated paper as affected by physico-chemical properties of coating solutions. Colloids Surf A: Physicochem Eng Asp 301:301–310. doi:10.1016/j.colsurfa.2006.12.079

    Article  Google Scholar 

  • Gennadios A, Weller CL, Testin, RF (1990) Modification of properties of edible wheat gluten films. ASAE Paper 90-6504

    Google Scholar 

  • Gennadios A, Brandenburg AH, Weller CL, Testin RF (1993a) Effect of pH on properties of wheat gluten and soy protein isolate films. J Agric Food Chem 41:1835–1839

    Article  Google Scholar 

  • Gennadios A, Park HJ, Weller CL (1993b) Relative humidity and temperature effects on tensile strength of edible protein and cellulose andher films. Trans ASAE 36:1867–1872

    Article  Google Scholar 

  • Gennadios A, Weller CL, Testin RF (1993c) Property modification of edible wheat gluten-based films. Trans ASAE 36:465–470

    Article  Google Scholar 

  • Gennadios A, Mc Hugh TH, Weller CL, Krochta JM (1994) Edible coating and films based on protein. In: Krochta JM, Balwin EA, Niperos Carriedo MO (ed) Edible coatings and films to improve food quality, 201277, Technomic Publishing, 978-1-42003-198-0 Basel

    Google Scholar 

  • Ghanbarzodeh B, Oromiehie AR, Musavi M et al (2007) Study of mechanical properties, oxygen permeability and AFM topography of zein films plasticized by polyols. Packag Technol Sci 20:155–163. doi:10.1002/pts.750

    Article  Google Scholar 

  • Gomez-Estaca J, Montero P, Fernandez-Martin F, Gomez-Guillen MC (2009) Physico-chemical and film-forming properties of bovine-hide and tuna-skin gelatin: a comparative study. J Food Eng 90:480–486

    Google Scholar 

  • Gómez-Estaca J, Montero P, Gómez-Guillén MC (2014) Shrimp (Litopenaeus vannamei) muscle proteins as source to develop edible films. Food Hydrocolloids 41:86–94

    Google Scholar 

  • Gomez-Guillen MC, Perez-Mateos M, Gomez-Estaca J et al (2009) Fish gelatin: a renewable material for developing active biodegradable films. Trends Food Sci Technol 20:3–16. doi:10.1016/j.tifs.2008.10.002

    Article  Google Scholar 

  • Gontard N, Guilbert S, Cuq JL (1992) Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology. J Food Sci 57(190–195):199

    Google Scholar 

  • Gontard N, Guilbert S, Cuq JL (1993) Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. J Food Sci 58:206–211

    Article  Google Scholar 

  • Gontard N, Duchez C, Cuq JL, Guilbert S (1994) Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. Int J Food Sci Technol 29:39–50

    Article  Google Scholar 

  • Gontard N, Marchesseau S, Cuq JL, Guilbert S (1995) Water vapour permeability of edible bilayer films of wheat gluten and lipids. Int J Food Sci Technol 30:49–56

    Article  Google Scholar 

  • Gontard N, Ring S (1996) Edible wheat gluten film: Influence of water content on glass transition temperature. J Agric Food Chem 44:3474–3478

    Article  Google Scholar 

  • Gontard N, Thibault R, Cuq B, Guilbert S (1996) Influence of relative humidity and film composition on oxygen and carbon dioxide permeabilities of edible films. J Agric Food Chem 44:1064–1069

    Article  Google Scholar 

  • Grevellec J, Marquié C, Ferry L, Crespy A, Vialettes V (2001) Processability of cottonseed proteins into biodegradable materials. Biomacromol 2:1104–1109. doi:10.1021/bm015525d

    Article  Google Scholar 

  • Grouber B (1983) Les gélatines: propriétés, contrôles et principales applications. Labo-Pharm. Problèm Techn 337:909–916

    Google Scholar 

  • Guilbert S (1986) Technology and application of edible protective films. In: Mathlouthi M (ed) Food packaging and preservation. Elsevier Applied Science, New York, pp 371–394

    Google Scholar 

  • Guilbert S (1988) Use of superficial edible layer to protect intermediate moisture foods: Application to the protection of tropical fruit dehydrated by osmosis. In: Seow CC, Teng TT, Quah CH (eds) Food preservation by moisture control. Elsevier Applied Science, London, pp 199–219

    Google Scholar 

  • Guilbert S, Biquet B (1989) Les films et enrobages comestibles. In: Bureau G, Multon JJ (eds) L’emballage des Denrées Alimentaires de Grande Consommation. Technique et Documentation, Lavoisier, Apria, Paris, pp 320–359

    Google Scholar 

  • Guilbert S, Gontard N (1995) Edible and biodegradable food packaging. In: Ackermann P, Jägerstad M, Ohlsson T (eds) Foods and packaging materials—chemical interactions. Royal Society of Chemistry, Cambridge, pp 159–168

    Google Scholar 

  • Guilbert S, Cuq B (2005) Material formed from proteins. In: Bastioli C (ed) Handbook of biodegradable polymers. Rapra Technology Limited, United Kingdom

    Google Scholar 

  • Guilbert S, Gontard N (2005) Agro-polymers for edible and biodegradable films: review of agricultural polymeric materials, physical and mechanical. In: Innovative in Food Packaging, Han JH (ed) Food Science and Technology, International Series, Elsevier Academic Press: New York

    Google Scholar 

  • Guo XA (1983) Research on heat denaturation of soy protein after solvent extraction and traditional Chinese soy foods. In: Irwin BJ, Sinclair JB, and Wang JL (eds) Soybean Research in China and the United States. University of Illinois, Urbana-Champaign, p 64–66

    Google Scholar 

  • Han JH (2005) New technologies in food packaging: overview. In: Han JH (ed) Innovations in food packaging. Elsevier Academic Press, San Diego, pp 3–11

    Chapter  Google Scholar 

  • Hebert GD, Holloway OE (1992) Product and process of coating nuts with edible protein. U.S. patent 5,149,562

    Google Scholar 

  • Herald TJ, Hachmeister KA, Huang S, Bowers JR (1996) Corn zein packaging materials for cooked turkey. J Food Sci 61:415–421

    Article  Google Scholar 

  • Hernandez-Izquierdo VM (2007) Thermal transitions, extrusion, and heat-sealing of whey protein edible films [dissertation]. Univ. of California, Davis, Calif. 110 p

    Google Scholar 

  • Hernandez-Izquierdo VM, Krochta JM (2008) Thermoplastic processing of proteins for film formation—a review. J Food Sci 73:R30–R39. doi:10.1111/j.1750-3841.2007.00636.x

    Article  Google Scholar 

  • Hernandez-Izquierdo VM, Reid DS, McHugh TH, Berrios JDJ, Krochta JM (2008) Thermal transitions and extrusion of glycerolplasticized whey protein mixtures. J Food Sci 73:E169–E175

    Article  Google Scholar 

  • Hernández-Muñoz P, Hernández RJ (2001) Glutenin and gliadin films from wheat gluten: preparation and properties. In IFT Annual Meeting. Volume Session 73D, poster 36: New Orleans, Louisiana

    Google Scholar 

  • Hernandez-Munoz P, Lagaron JM, Lopez-Rubio A, Gavara R (2004a) Gliadins polymerized with cysteine: effects on the physical and water barrier properties of derived films. Biomacromol 5:1503–1510. doi:10.1021/bm0499381

    Article  Google Scholar 

  • Hernandez-Munoz P, Villalobos R, Chiralt A (2004b) Effect of cross-linking using aldehydes on properties of glutenin-rich films. Food Hydrocolloids 18:403–411. doi:10.1016/s0268-005x(03)00128-0

    Article  Google Scholar 

  • Hernandez-Munoz P, Villalobos R, Chiralt A (2004c) Effect of thermal treatments on functional properties of edible films made from wheat gluten fractions. Food Hydrocoll 18:647–654

    Article  Google Scholar 

  • Hernandez-Munoz P, Kanavouras A, Lagaron JM, Gavara R (2005) Development and characterization of films based on chemically cross-linked gliadins. J Agric Food Chem 53:8216–8223. doi:10.1021/jf050952u

    Article  Google Scholar 

  • Hood LL (1987) Collagen in sausage casings. Adv Meat Res 4:109–129

    Google Scholar 

  • Hu CY, Chen M, Wang ZW (2012) Release of thymol, cinnamaldehyde and vanillin from soy protein isolate films into olive oil. Packag Technol Sci 25:97–106. doi:10.1002/pts.964

    Article  Google Scholar 

  • Irissin-Mangata J, Bauduin G, Boutevin B, Gontard N (2001) New plasticizers for wheat gluten films. Eur Polymer J 37:1533–1541. doi:10.1016/s0014-3057(01)00039-8

    Article  Google Scholar 

  • Jane J, Lim S, Paetau I, Spence K, Wang S (1994) Biodegradable plastics made from agricultural biopolymers. In: Fishman ML, Friedman RB, Huang SJ (eds) Polymers from Agricultural Coproducts. ACS Symposium Series 575: Chicago, pp 92–100

    Google Scholar 

  • Jaynes HO, Chou WN (1975) New method to produce soy protein-lipid films. Food Prod Dev 9:86–90

    Google Scholar 

  • Katoh K, Shibayama M, Tanabe T, Yamauchi K (2004) Preparation and physicochemical properties of compression-molded keratin films. Biomaterials 25:2265–2272. doi:10.1016/j.biomaterials.2003.09.021

    Article  Google Scholar 

  • Kim KM, Weller CL, Hanna MA, Gennadios A (2002) Heat curing of soy protein films at selected temperatures and pressures. Lebensm Wiss Technol Food Sci Technol 35:140–145. doi:10.1006/fstl.2001.0825

    Article  Google Scholar 

  • Koehler P, Kieffer R, Wieser H (2010) Effect of hydrostatic pressure and temperature on the chemical and functional properties of wheat gluten III. Studies on gluten films. J Cereal Sci 51(1):140–145

    Article  Google Scholar 

  • Kosar J, Atkins GM (1968) Encapsulation. U.S. patent 3,406,119

    Google Scholar 

  • Krishna M, Nindo CI, Min SC (2012) Development of fish gelatin edible films using extrusion and compression molding. J Food Eng 108:337–344. doi:10.1016/j.jfoodeng.2011.08.002

    Article  Google Scholar 

  • Krochta JM (1997) Edible protein films and coatings. In: Damodaran S, Paraf A (eds) Food proteins and their applications. Marcel Dekker Inc, New York, pp 529–550

    Google Scholar 

  • Krochta JM, Baldwin EA, Nysperos-Car-riedo M (1994) Edible coatings and films to improve food quality. CRC Press, Boca Raton, pp 1–7, 25–101, 189–330

    Google Scholar 

  • Krull LH, Inglett GE (1971) Industrial uses of gluten. Cereal Sci Today 16(232–236):261

    Google Scholar 

  • Lacroix M, Cooksey K (2005) Edible films and coatings from animal-origin proteins. In: Han JH (ed) Innovations in food packaging. Elsevier Academic Press, San Diego, pp 301–317

    Chapter  Google Scholar 

  • Lagrain B, Goderis B, Brijs K, Delcour JA (2010) Molecular basis of processing wheat gluten toward biobased materials. Biomacromol 11:533–541. doi:10.1021/bm100008p

    Article  Google Scholar 

  • Landman W, Lovegren NV, Feuge RO (1960) Permeability of some fat products to moisture. J Am Oil Chem Soc 37:1–4

    Article  Google Scholar 

  • Li Y, Li J, Xia Q et al (2012) Understanding the dissolution of α-zein in aqueous ethanol and acetic acid solutions. J Phys Chem B 116:12057–12064. doi:10.1021/jp305709y

    Article  Google Scholar 

  • Lieberman ER, Gilbert SG (1973) Gas permeation of collagen films as affected by cross-linkage, moisture, and plasticizer content. J Polym Sci 41:33–43

    Google Scholar 

  • Lopez-Rubio A, Almenar E, Hernandez-Munoz P et al (2004) Overview of active polymer-based packaging technologies for food applications. Food Rev Int 20:357–387. doi:10.1081/lfri-200033462

    Article  Google Scholar 

  • Mabesa RC, Marshall RT, Anderson ME (1979) Factors influencing the tenacity of dried milk films exposed to high humidity. J Food Protect 42:631–637

    Article  Google Scholar 

  • Mahmoud R, Savello PA (1992) Mechanical properties of and water vapor transferability through whey protein films. J Dairy Sci 75:942–946

    Article  Google Scholar 

  • Mahmoud R, Savello PA (1993) Solubility and hydrolyzibility of films produced by transglutaminase catalytic cross-linking of whey protein. J Dairy Sci 76:29–35

    Article  Google Scholar 

  • Maria Martelli S, Moore G, Silva Paes S, Gandolfo C, Laurindo JB (2006) Influence of plasticizers on the water sorption isotherms and water vapor permeability of chicken feather keratin films. LWT–Food Sci Technol 39:292–301. doi:10.1016/j.lwt.2004.12.014

    Article  Google Scholar 

  • Marquie C (2001) Chemical reactions in cottonseed protein cross-linking by formaldehyde, glutaraldehyde, and glyoxal for the formation of protein films with enhanced mechanical properties. J Agric Food Chem 49:4676–4681

    Article  Google Scholar 

  • Marquié C, Aymard C, Cuq JL, Guilbert S (1995) Biodegradable packaging made from cottonseed flour: formation and improvement by chemical treatment with gossypol, formaldehyde and glutaraldehyde. J Agric Food Chem 43:2762–2766

    Article  Google Scholar 

  • Marquié C, Tessier AM, Aymard C, Guilbert S (1997) HPLC determination of the reactive lysine content of cottonseed protein films to monitor the extend of cross-linking by formaldehyde, glutaraldehyde, and N-glyoxal. J Agric Food Chem 45:922–926

    Article  Google Scholar 

  • Martucci JF, Ruseckaite RA (2009) Tensile properties, barrier properties, and biodegradation in soil of compressionmolded gelatin-dialdehyde starch films. J Appl Polym Sci 112: 2166–2178. doi:10.1002/ app.29695

    Google Scholar 

  • McHugh TH, Krochta JM (1994) Sorbitol- vs glycerol-plasticized whey protein edible films: integrated oxygen permeability and tensile property evaluation. J Agric Food Chem 42:841–845

    Article  Google Scholar 

  • Micard V, Morel MH, Bonicel J, Guilbert S (2001) Thermal properties of raw and processed wheat gluten in relation with protein aggregation. Polymer 42:477–485

    Article  Google Scholar 

  • Motoki M, Aso H, Seguro K, Nio N (1987) aS1-Casein film prepared using transglutaminase. Agric Biol Chem 51:993–996

    Google Scholar 

  • Myers AW, Meyer JA, Rogers CE, Stannett V, Szwarc M (1961) Studies in the gas and vapor permeability of plastic films and coated papers. The permeation of water vapor. Tappi J 45:58–67

    Google Scholar 

  • Noznick P P, Bundus R H 1967 Coating for dry roasted nuts. U.S. patent 3,314,800

    Google Scholar 

  • Nur Hanani ZA, Roos YH, Kerry JP (2014) Use and application of gelatin as po-tential biodegradable packaging materials for food products. Int J Biol Macromol 10.1016//j.ijbiomac.2014.04.027

  • Okamoto S (1978) Factors affecting protein film formation. Cereal Foods World 23:256–262

    Google Scholar 

  • Orliac O, Rouilly A, Silvestre F, Rigal L (2003) Effects of various plasticizers on the mechanical properties, water resistance and aging of thermo-moulded films made from sunflower proteins. Ind Crops Prod 18:91–100. doi:10.1016/s0926-6690(03)00015-3

    Article  Google Scholar 

  • Oudet C (1994) Polymères. Structure et Propriétés. Paris, Masson

    Google Scholar 

  • Paetau I, Chen CZ, Jane JL (1994a) Biodegradable plastic made from soybean products. 1. Effect of preparation and processing on mechanical properties and water absortion. Ind Eng Chem Res 33:1821–1827

    Article  Google Scholar 

  • Paetau I, Chen CZ, Jane JL (1994b) Biodegradable plastic made from soybean products. II. Effects of cross-linking and cellulose incorporation on mechanical properties and water absorption. J Environ Polym Degrad 2:211–217

    Article  Google Scholar 

  • Park HJ, Chinnan MS (1990) Properties of edible coatings for fruits and vegetables. ASAE Paper 90-6510

    Google Scholar 

  • Park HJ, Bunn JM, Weller CL, Vergano PJ, Testin RF (1994) Water vapor permeability and mechanical properties of grain protein-based films as affected by mixtures of polyethylene glycol and glycerin plasticizers. Trans ASAE 37:1281–1285

    Article  Google Scholar 

  • Pereda M, Arnica G, Racz I, Marcovich NE (2011) Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. J Food Eng 103:76–83. doi:10.1016/j.jfoodeng.2010.10.001

    Article  Google Scholar 

  • Pol H, Dawson P, Acton J, Ogale A (2002) Soy protein isolate/corn-zein laminated films: transport and mechanical properties. J Food Sci 67:212–217

    Article  Google Scholar 

  • Pommet M, Redl A, Morel MH, Domenek S, Guilbert S (2003) Thermoplastic processing of protein-based bioplastics: chemical engineering aspects of mixing, extrusion and hot molding. Macromol Symp 197:207–17

    Google Scholar 

  • Pommet M, Redl A, Guilbert S, Morel MH (2005) Intrinsic influence of various plasticizers on functional properties and reactivity of wheat gluten thermoplastic materials. J Cereal Sci 42:81–91

    Article  Google Scholar 

  • Popović S, Pericin D, Vastag Z, Lazić V, Lj Popović (2012) Pumpkin oil cake protein isolate films as potential gas barrier coating. J Food Eng 110(3):374–379

    Article  Google Scholar 

  • Redl A, Gontard N, Guilbert S (1996) Determination of sorbic acid diffusivity in edible wheat gluten and lipid based films. J Food Sci 61:116–120

    Article  Google Scholar 

  • Redl A, Morel MH, Bonicel J, Vergnes B, Guilbert S (1999) Extrusion of wheat gluten plasticized with glycerol: influence of process conditions on flow behavior, rheological properties, and molecular size distribution. Cereal Chem 76(3):361–370

    Article  Google Scholar 

  • Rhim JW, Gennadios A, Fu DJ, Weller CL, Hanna MA (1999) Properties of ultraviolet irradiated protein films. Food Sci Technol Lebensm Wiss Technol 32: 129–133

    Google Scholar 

  • Rhim JW, Gennadios A, Handa A, Weller CL, Hanna MA (2000) Solubility, tensile, and color properties of modified soy protein isolate films. J Agric Food Chem 48:4937–4941

    Article  Google Scholar 

  • Rouilly A, Meriaux A, Geneau C et al (2006) Film extrusion of sunflower protein isolate. Polym Eng Sci 46:1635–1640. doi:10.1002/pen.20634

    Article  Google Scholar 

  • Santosa FXB, Padua GW (1999) Tensile properties and water absorption of zein sheets plasticized with oleic and linoleic acids. J Agric Food Chem 47:2070–2074

    Article  Google Scholar 

  • Schou M, Longares A, Montesinos-Herrero CF, Monahan DJ, O’Riordan M, O’Sullivan (2005) Properties of edible sodiumcaseinatefilms and their application as food wrapping. Lebensm Wiss Technol 38:605–610. ISSN: 0023-6438

    Google Scholar 

  • Schrooyen PMM, Dijkstra PJ, Oberthü RG, Bantjes A, Feijen J (2000) Partially carboxymethylated feather keratins. 1. Properties in aqueous systems. J Agric Food Chem 48:4326–4334. doi:10.1021/jf9913155

    Article  Google Scholar 

  • Shukla R, Cheryan M (2001) Zein: the industrial protein from corn. Ind Crops Prod 13:171–192

    Article  Google Scholar 

  • Slade L, Levine H (1993a) The glassy state phenomenon in food molecules. In: Blanshard JM, Lillford PJ (eds) The glassy state in foods. Nottingham University Press, Loughborough, England, pp 35–102

    Google Scholar 

  • Slade L, Levine H (1993b) Water relationships in starch transitions. Carbohydr Polym 21:105–131

    Article  Google Scholar 

  • Smith AK, Circle TW (1972) Protein products as food ingredients. In: Smith AK, Circle SJ (eds) Soybeans: chemistry and technology, vol 1. AVI, Westport, pp 339–388

    Google Scholar 

  • Snyder HE, Kwon TW (1987) Soybean utilization. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  • Sommer I, Kunz PM (2012) Improving the water resistance of biodegradable collagen films. J Appl Polym Sci 125:E27–E41. doi:10.1002/app.36461

    Article  Google Scholar 

  • Song YH, Zheng QA (2008) Preparation and properties of thermo-molded bioplastics of glutenin-rich fraction. J Cereal Sci 48:77–82. doi:10.1016/j.jcs.2007.08.007

    Article  Google Scholar 

  • Song NB, Lee JH, Al Mijan M, Song KB (2014) Development of a chicken feather protein film containing clove oil and its application in smoked salmon packaging. LWT–Food Sci and Technol 57:453–460. doi:10.1016/j.lwt.2014.02.009

    Article  Google Scholar 

  • Sothornvit R, Krochta JM (2005) Plasticizers in edible films and coatings. In: Han JH (ed) Innovations in food packaging. Elsevier Academic Press, San Diego, pp 403–433

    Chapter  Google Scholar 

  • Sothornvit R, Olsen CW, McHugh TH, Krochta JM (2003) Formation conditions, watervapor permeability, and solubility of compression-molded whey protein films. J Food Sci 68(6):1985–1989

    Article  Google Scholar 

  • Sothornvit R, Olsen CW, McHugh TH, Krochta JM (2007) Tensile properties of compression-molded whey protein sheets: determination of molding condition and glycerol-content effects and comparison with solution-cast films. J Food Eng 78:855–860. doi:10.1016/j.jfoodeng.2005.12.002

    Article  Google Scholar 

  • Sothornvit R, Hong SI, An DJ, Rhim JW (2010) Effect of clay content on the physical and antimicrobial properties of whey protein isolate/organo-clay composite films. LWT–Food. Sci Technol 43:279–284. doi:10.1016/j.lwt.2009.08.010

    Google Scholar 

  • Stuchell YM, Krochta JM (1994) Enzymatic treatments and thermal effects on edible soy protein films. J Food Sci 59:1332–1337

    Article  Google Scholar 

  • Sun SM, Song YH, Zheng Q (2008a) Morphology and mechanical properties of thermo-molded bioplastics based on glycerolplasticized wheat gliadins. J Cereal Sci 48:613–618. doi:10.1016/j.jcs.2008.01.005

    Article  Google Scholar 

  • Sun SM, Song YH, Zheng Q (2008b) Thermo-molded wheat gluten plastics plasticized with glycerol: effect of molding temperature. Food Hydrocoll 22:1006–1013. doi:10.1016/j.foodhyd.2007.05.012

    Article  Google Scholar 

  • Takenaka H, Ito H, Asano H, Hattori H (1967) On some physical properties of film forming materials. Gifu Yakka Daigaku 17:142–146

    Google Scholar 

  • Tanabe T, Okitsu N, Yamauchi K (2004) Fabrication and characterization of chemically crosslinked keratin films. Mater Sci Eng C 24:441–446

    Article  Google Scholar 

  • Tanada-Palmu PS, Grosso CRF (2005) Effect of edible wheat gluten-based films and coatings on refrigerated strawberry (Fragaria ananassa) quality. Postharvest Biol Technol 36(2):199–208

    Article  Google Scholar 

  • Tolstoguzov VB (1993) Thermoplastic extrusion—the mechanism of the formation of extrudate structure and properties. J Am Oil Chem Soc 70(4):417–424

    Article  Google Scholar 

  • Tropini V, Lens JP, Mulder W, Silvestre F (2004) Wheat gluten films cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide. Ind Crops Prod 20:281–289. doi:10.1016/j. indcrop.2003.10.012

    Google Scholar 

  • Tryhnew LJ, Gunaratne KW, Spencer JV (1973) Effect of selected coating materials on the bacterial penetration of the avian egg shell. J Milk Food Technol 36:272–275

    Article  Google Scholar 

  • Türe H, Gällstedt M, Kuktaite R, Johansson E, Hedenqvist MS (2011) Protein network structure and properties of wheat gluten extrudates using a novel solvent-free approach with urea as a combined denaturant and plasticiser. Soft Matter 7:9416–9423. doi:10.1039/c1sm05830d

    Article  Google Scholar 

  • Ullsten NH, Gallstedt M, Johansson E, Graslund A, Hedenqvist MS (2006) Enlarged processing window of plasticized wheat gluten using salicylic acid. Biomacromol 7:771–776. doi:10.1021/bm050822u

    Article  Google Scholar 

  • Ullsten NH, Cho SW, Spencer G et al (2009) Properties of extruded vital wheat gluten sheets with sodium hydroxide and salicylic acid. Biomacromol 10:479–488. doi:10.1021/bm800691h

    Article  Google Scholar 

  • Vachon C, Yu HL, Yefsah R et al (2000) Mechanical and structural properties of milk protein edible films cross-linked by heating and gamma-irradiation. J Agric Food Chem 48:3202–3209

    Article  Google Scholar 

  • Van Krevelan DW (1976) Properties of polymers, their estimation and correlation with chemical structure. Elsevier Applied Science, Amsterdam

    Google Scholar 

  • Verbeek CJR, Berg LEV (2009) Recent developments in thermo-mechanical processing of proteinous bioplastics. Recent Pat Mater Sci 2:171–189. doi:10.2174/1874464810902030171

    Article  Google Scholar 

  • Wang Y, Padua GW (2003) Tensile properties of extruded Zein sheets and extrusion blown films. Macromol Mater Eng 288:886–893. doi:10.1002/mame.200300069

    Article  Google Scholar 

  • Watanabe K, Okamoto S (1973) Formation of yuba-like film from wheat gluten. Nippon Shokuhin Kogyo Gakkai-Shi 20:66–72

    Article  Google Scholar 

  • Wessling C, Nielsen T, Leufvén A, Jägerstad M (1999) Retention of α-tocopherol in low-density polyethylene (LDPE) and polypropylene (PP) in contact with foodstuffs and food-simulating liquids. J Sci Food Agric 79:1635–1641. doi:10.1002/(sici)1097-0010(199909)79:12<1635:aid-jsfa413>3.0.co;2-#

    Article  Google Scholar 

  • Wieser H (2007) Chemistry of gluten proteins. Food Microbiol, 24(2):115–119

    Google Scholar 

  • Wu LC, Bates RP (1972a) Soy protein-lipid films. 1. Studies on the film formation phenomenon. J Food Sci 37:36–39

    Article  Google Scholar 

  • Wu LC, Bates RP (1972b) Soy protein-lipid films. 2. Optimization of film formation. J Food Sci 37:40–44

    Google Scholar 

  • Wu LC, Bates RP (1973) Influence of ingredients upon edible protein-lipid characteristics. J Food Sci 38:783–787

    Article  Google Scholar 

  • Zhang J, Mungara P, Jane J (2001) Mechanical and thermal properties of extruded soy protein sheets. Polymer 42:2569–2578. doi:10.1016/s0032-3861(00)00624-8

    Article  Google Scholar 

  • Zhang XQ, Do MD, Casey P et al (2010) Chemical cross-linking gelatin with natural phenolic compounds as studied by highresolution NMR spectroscopy. Biomacromol 11:1125–1132. doi:10.1021/bm1001284

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Showkat Ahmad Bhawani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhawani, S.A., Hussain, H., Bojo, O., Fong, S.S. (2018). Proteins as Agricultural Polymers for Packaging Production. In: Jawaid, M., Swain, S. (eds) Bionanocomposites for Packaging Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-67319-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67319-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67318-9

  • Online ISBN: 978-3-319-67319-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics