Skip to main content

A Shared Memory Parallel Heuristic Algorithm for the Large-Scale p-Median Problem

  • Conference paper
  • First Online:
Book cover Optimization and Decision Science: Methodologies and Applications (ODS 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 217))

Included in the following conference series:

Abstract

We develop a modified hybrid sequential Lagrangean heuristic for the p-median problem and its shared memory parallel implementation using the OpenMP interface. The algorithm is based on finding the sequences of lower and upper bounds for the optimal value by use of a Lagrangean relaxation method with a subgradient column generation and a core selection approach in combination with a simulated annealing. The parallel algorithm is implemented using the shared memory (OpenMP) technology. The algorithm is then tested and compared with the most effective modern methods on a set of test instances taken from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.roylongbottom.org.uk.

References

  1. Irkutsk Supercomputer Centre of SB RAS (2017). http://hpc.icc.ru

  2. Avella, P., Boccia, M., Salerno, S., Vasilyev, I.: An aggregation heuristic for large scale p-median problem. Comput. Oper. Res. 39(7), 1625–1632 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Avella, P., Sassano, A., Vasilyev, I.: Computational study of large-scale \(p\)-median problems. Math. Program. 109(1), 89–114 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Crainic, T.G., Gendreau, M., Hansen, P., Mladenović, N.: Cooperative parallel variable neighborhood search for the \(p\)-median. J. Heuristics 10(3), 293–314 (2004)

    Article  Google Scholar 

  5. Daskin, M.S., Maass, K.L.: The p-median problem. In: Laporte, G., Nickel, S., da Gama, F.S. (eds.) Location Science, pp. 21–45. Springer, Cham (2015)

    Google Scholar 

  6. García, S., Labbé, M., Marín, A.: Solving large p-median problems with a radius formulation. INFORMS J. Comput. 23(4), 546–556 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Garcia-López, F., Melián-Batista, B., Moreno-Pérez, J.A., Moreno-Vega, J.M.: The parallel variable neighborhood search for the p-median problem. J. Heuristics 8(3), 375–388 (2002)

    Article  MATH  Google Scholar 

  8. Garcia-López, F., Melián-Batista, B., Moreno-Pérez, J.A., Moreno-Vega, J.M.: Parallelization of the scatter search for the p-median problem. Parallel computing in logistics. Parallel Comput. 29(5), 575–589 (2003)

    Google Scholar 

  9. Hakimi, S.L.: Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Oper. Res. 13(3), 462–475 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hanafi, S., Sterle, C., Ushakov, A., Vasilyev, I.: A parallel subgradient algorithm for Lagrangean dual function of the \(p\)-median problem. Studia Informatica Universalis 9(3), 105–124 (2011)

    Google Scholar 

  11. Hansen, P., Brimberg, J., Urosević, D., Mladenović, N.: Solving large \(p\)-median clustering problems by primal-dual variable neighborhood search. Data Min. Knowl. Discov. 19(3), 351–375 (2009)

    Article  MathSciNet  Google Scholar 

  12. Hansen, P., Jaumard, B.: Cluster analysis and mathematical programming. Math. Program. 79(1–3), 191–215 (1997)

    MATH  MathSciNet  Google Scholar 

  13. Hoare, C.A.R.: Algorithm 65: Find. Commun. ACM 4(7), 321–322 (1961). https://doi.org/10.1145/366622.366647

  14. Irawan, C.A., Salhi, S.: Solving large p-median problems by a multistage hybrid approach using demand points aggregation and variable neighbourhood search. J. Glob. Optim. 63(3), 537–554 (2015). https://doi.org/10.1007/s10898-013-0080-z

    Article  MATH  MathSciNet  Google Scholar 

  15. Irawan, C.A., Salhi, S., Scaparra, M.P.: An adaptive multiphase approach for large unconditional and conditional p-median problems. Eur. J. Oper. Res. 237(2), 590–605 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kariv, O., Hakimi, S.: An algorithmic approach to network location problems. I: the \(p\)-centers. SIAM J. Appl. Math. 37(3), 513–538 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ma, L., Lim, G.J.: GPU-based parallel vertex substitution algorithm for the \(p\)-median problem. Comput. Ind. Eng. 64(1), 381–388 (2013)

    Article  Google Scholar 

  18. Mladenović, N., Brimberg, J., Hansen, P., Moreno-Pérez, J.: The \(p\)-median problem: a survey of metaheuristic approaches. Eur. J. Oper. Res. 179(3), 927–939 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Redondo, J.L., Marín, A., Ortigosa, P.M.: A parallelized Lagrangean relaxation approach for the discrete ordered median problem. Ann. Oper. Res. 246(1), 253–272 (2014). https://doi.org/10.1007/s10479-014-1744-x

    MATH  MathSciNet  Google Scholar 

  20. Reese, J.: Solution methods for the p-median problem: an annotated bibliography. Networks 28(3), 125–142 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Resende, M.G.C., Werneck, R.F.: A hybrid heuristic for the \(p\)-median problem. J. Heuristics 10(1), 59–88 (2004)

    Article  MATH  Google Scholar 

  22. Ushakov, A.V., Klimentova, X., Vasilyev, I.: Bi-level and bi-objective p-median type problems for integrative clustering: application to analysis of cancer gene-expression and drug-response data. IEEE-ACM Trans. Comput. Biol. Bioinform. (2016). https://doi.org/10.1109/TCBB.2016.2622692

  23. Ushakov, A.V., Vasilyev, I.L., Gruzdeva, T.V.: A computational comparison of the p-median clustering and k-means. Int. J. Artif. Intel. 13(1), 229–242 (2015)

    Google Scholar 

  24. Whitaker, R.A.: A fast algorithm for the greedy interchange for large-scale clustering and median location problems. Can. J. Oper. Res. Inf. Process. 21, 95–108 (1983)

    MATH  Google Scholar 

Download references

Acknowledgements

The work of A. Ushakov is supported by the Russian Science Foundation under grant 17-71-10176.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Vasilyev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vasilyev, I., Ushakov, A. (2017). A Shared Memory Parallel Heuristic Algorithm for the Large-Scale p-Median Problem. In: Sforza, A., Sterle, C. (eds) Optimization and Decision Science: Methodologies and Applications. ODS 2017. Springer Proceedings in Mathematics & Statistics, vol 217. Springer, Cham. https://doi.org/10.1007/978-3-319-67308-0_30

Download citation

Publish with us

Policies and ethics