Skip to main content

The Pressure Blocking Effect in a Growing Vapor Bubble

  • Chapter
  • First Online:
  • 739 Accesses

Part of the book series: Mathematical Engineering ((MATHENGIN))

Abstract

The phenomenon of gas (vapor) bubbles in a liquid, in spite of the fluctuation character of their nucleation and the short lifetime, has a wide spectrum of manifestations: underwater acoustics, sonoluminescence, ultrasonic diagnostics, decreasing friction by surface nanobubbles, nucleate boiling, etc. (Lohse in Nonlinear Phenom Complex Syst 9(8.2):125–132, 2006 [1]).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

\( a\, \) :

Heat diffusivity

\( c_{p} \) :

Isobar heat capacity

\( {\text{Ja}} \) :

Jakob number

\( m\, \) :

Growth modulus

\( p \) :

Pressure

\( q \) :

Heat flow

\( R \) :

Bubble radius

\( R_{g} \) :

Individual gas constant

\( L \) :

Heat of phase transition

\( {\text{S}} \) :

Stefan number

\( T \) :

Temperature

\( t \) :

Time

\( \varepsilon \, \) :

Density ratio between phases

\( \rho \) :

Density

\( b \) :

State in the vapor bubble

\( {\text{cr}} \) :

State at the critical point

\( e \) :

State on the energy spinodal

\( { \hbox{max} } \) :

Maximum (on the spinodal)

\( { \hbox{min} } \) :

Minimum (on the binodal)

\( s \) :

State on the saturation line

\( {\text{v}} \) :

Vapor

\( * \) :

State at the pressure blocking point

\( \infty \) :

State at infinity

References

  1. Prosperetti A (2004) Bubbles. Phys. Fluids 16. Paper 1852

    Google Scholar 

  2. Lohse D (2006) Bubble puzzles. Nonlinear Phenom Complex Syst 9(8.2):125–132

    Google Scholar 

  3. Straub J (2001) Boiling heat transfer and bubble dynamics in microgravity. Adv Heat Transf 35:157–172

    Google Scholar 

  4. Picker G (1998) Nicht-Gleichgewichts-Effekte beim Wachsen und Kondensieren von Dampfblasen, Dissertation, Technische Universitat München, München

    Google Scholar 

  5. Zudin YB (2015) Binary schemes of vapor bubble growth. J Eng Phys Thermophys 88(8.3):575–586

    Google Scholar 

  6. Labuntsov DA (1974) Current views on the bubble boiling mechanism. In: Heat transfer and physical hydrodynamics, Nauka, Moscow, 98–115 (In Russian)

    Google Scholar 

  7. Scriven LE (1959) On the dynamics of phase growth. Chem Eng Sci 10(1/2):1–14

    Article  Google Scholar 

  8. Plesset MS, Zwick SA (1954) The growth of vapor bubbles in superheated liquids. J Appl Phys 25:493–500

    Article  MathSciNet  MATH  Google Scholar 

  9. Labuntsov DA, Yagov VV (1978) Mechanics of Simple Gas-Liquid Structures. Moscow Power Engineering Institute, Moscow (In Russian)

    Google Scholar 

  10. Mikic BB, Rosenow WM, Griffith P (1970) On bubble growth rates. Int J Heat Mass Transf 13:657–666

    Article  Google Scholar 

  11. Avdeev AA, Zudin YB (2005) Inertial-thermal govern vapor bubble growth in highly superheated liquid. Heat Mass Transf 41:855–863

    Article  Google Scholar 

  12. Aktershev SP (2004) Growth of a vapor bubble in an extremely superheated liquid. Thermophysics and Aeromechanics 12(8.3):445–457

    Google Scholar 

  13. Skripov VP (1974) Metastable liquid. Wiley, New York

    Google Scholar 

  14. Korabel’nikov AV, Nakoryakov VE, Shraiber IR (1981) Taking account of nonequilibrium evaporation in the problems of the vapor bubble dynamics. High Temp 19(8.4):586–590

    Google Scholar 

  15. Vukalovich MP, Novikov II (1948) Equation of state of real gases. Gosenergoizdat, Moscow (In Russian)

    MATH  Google Scholar 

  16. Reid RC, Prausnitz JM, Poling BE (1988) The properties of gases and liquids, 4th edn. McGraw-Hill Education, Singapore

    Google Scholar 

  17. Novikov II (2000) Thermodynamics of spinodal and phase transitions. Nauka, Moscow (In Russian)

    Google Scholar 

  18. Boiko VG, Mogel KJ, Sysoev VM, Chalyi AV (1991) Characteristic features of the metastable states in liquid-vapor phase transitions. Usp Fiz Nauk 161(8.2):77–111 (In Russian)

    Google Scholar 

  19. Thormahlen I (1985) Grenze der Überhitzbarkeit von Flüssigkeiten: Keimbildung und Keimaktivierung, Fortschritt-Berichte VDI. Verfahrenstechnik. VDI-Verlag, Düsseldorf, Reihe 3, Nr. 104

    Google Scholar 

  20. Wiesche S (2000) Modellbildung und Simulation thermofluidischer Mikroaktoren zur Mikrodosierung, Fortschritt-Berichte VDI. Wärmetechnik/Kältetechnik. VDI-Verlag, Düsseldorf, Reihe 19, Nr. 131

    Google Scholar 

  21. Shepherd JE, Sturtevant B (1982) Rapid evaporation at the superheat limit. J FluidMech 121:379–402

    Article  Google Scholar 

  22. Weigand B (2015) Analyticalal methods for heat transfer and fluid flow problems, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  23. Labuntsov DA, Yagov VV (1975) Dynamics of vapor bubbles in the low-pressure region. Tr MEI 268:16–32 (In Russian)

    Google Scholar 

  24. Yagov VV (1988) On the limiting law of growth of vapor bubbles in the region of very low pressures (high Jakob numbers). High Temp 26(8.2):251–257

    Google Scholar 

  25. Theofanous TG, Bohrer TG, Chang MC, Patel PD (1978) Experiments and universal growth relations for vapor bubbles with microlayers. J Heat Transf 100:41–48

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Zudin, Y.B. (2018). The Pressure Blocking Effect in a Growing Vapor Bubble. In: Non-equilibrium Evaporation and Condensation Processes. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-67306-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67306-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67151-2

  • Online ISBN: 978-3-319-67306-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics