Skip to main content

Introduction to the Problem

  • Chapter
  • First Online:
Non-equilibrium Evaporation and Condensation Processes

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 756 Accesses

Abstract

The statistical mechanics (at present, the statistical physics), which is considered as a new trend in theoretical physics and is based on the description of involved systems with infinite number of molecules, was created by Maxwell, Boltzmann, and Gibbs. An important constituent of the statistical mechanics is the kinetic molecular theory , which resides on the Boltzmann integral-differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boltzmann L (1872) Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Wien Math. Naturwiss. Classe 66: 275–370. English translation: Boltzmann L. (2003) Further Studies on the Thermal Equilibrium of Gas Molecules. The Kinetic Theory of Gases. Hist Mod Phys Sci 1:262–349

    Article  Google Scholar 

  2. Boltzmann L (1900) Über die Entwicklung der Methoden der theoretischen Physik in neuerer Zeit. Jahresber Dtsch Mathematiker-Ver 8:71–95

    MATH  Google Scholar 

  3. Cercignani C (2006) Ludwig Boltzmann: The Man Who Trusted Atoms. Oxford

    Google Scholar 

  4. Haug H (2006) Statistische Physik—Gleichgewichtstheorie und Kinetik. 2. Auflage. Springer

    Google Scholar 

  5. Müller-Kirsten HJW (2013) Basics of statistical physics. 2nd edn. World Scientific

    Google Scholar 

  6. Boltzmann L, Nabl J (1907) Kinetische Theorie der Materie. Enzyklopiidie Math. Wissenschaften 5 (1): 493–557. Teubner: Leipzig

    Google Scholar 

  7. Bogolyubov NN (1946) Kinetic equations. J Exp Theor Phys (in Russian) 16(8):691–702

    Google Scholar 

  8. Ruel D (1991) Hasard et Chaos. Princeton University Press

    Google Scholar 

  9. Bobylev AV (1984) Exact solutions of the nonlinear Boltzmann equation and of its models. Fluid Mech. Soviet Res. 13(4):105–110

    MathSciNet  Google Scholar 

  10. Gusarov AV, Smurov I (2002) Gas-dynamic boundary conditions of evaporation and condensation: Numerical analysis of the Knudsen layer. Phys Fluids 14(12):4242–4255

    Article  MathSciNet  MATH  Google Scholar 

  11. Micol JM (1995) Hypersonic Aerodynamic/Aerothermodynamic Testing Capabilities at Langley Research Center: Aerodynamic Facilities Complex. AIAA Paper 95–2107

    Google Scholar 

  12. Anisimov SI (1968) Vaporization of metal absorbing laser radiation. Sov Phys JETP 27(1):182–183

    Google Scholar 

  13. Ytrehus T (1977) Theory and experiments on gas kinetics in evaporation. In: Potter JL (ed) Rarefied Gas Dynamics N.Y. 51 (2): 1197–1212

    Google Scholar 

  14. Khight CJ (1979) Theoretical modeling of rapid snrface vaporization with back pressure. AIAA Journal 17(5):519–523

    Article  Google Scholar 

  15. Khight CJ (1982) Transient vaporization from a surface into vacuum. AIAA Journal 20(7):950–955

    Article  Google Scholar 

  16. Ho JR, Grigoropoulos CP, Humphrey JAC (1995) Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals. J Appl Phys 78(6):4696–4709

    Article  Google Scholar 

  17. Gusarov AV, Gnedovets AG, Smurov I (2000) Gas dynamics of laser ablation: Influence of ambient atmosphere. J Appl Phys 88:4352–4364

    Article  Google Scholar 

  18. Crifo JF (1994) Elements of cometary aeronomy. Curr Sci 66(7–8):583–602

    Google Scholar 

  19. Crifo JF, Rodionov AV (1997) The dependence of the circumnuclear come structure on the properties of the nucleus. I. Comparison between an homogeneous and an inhomogeneous spherical nucleus with application to P/Wirtanen. Icarus 127:319–353

    Article  Google Scholar 

  20. Crifo JF, Rodionov AV (2000) The dependence of the circumnuclear come structure on the properties of the nucleus. IV. Structure of the night-side gas coma of a strongly sublimating nucleus. Icarus 148:464–478

    Article  Google Scholar 

  21. Rodionov AV, Crifo JF, Szegö K, Lagerros J, Fulle M (2002) An advanced physical model of cometary activity. Planet. Space Sci 50: 983–102

    Google Scholar 

  22. Aristov V (1999) Study of unstable numerical solutions of the Boltzmann equation and description of turbulence. Proc. 21st Intern. Symp. on Raref. Gas Dynam Cepadues Editions 2:189–196

    Google Scholar 

  23. Aristov V, Ilyin O (2010) Kinetic model of the spatio-temporal turbulence. Phys Let A 374(43):4381–4438

    Article  MATH  Google Scholar 

  24. Cercignani C (1990) Mathematical methods in kinetic theory. Springer

    Google Scholar 

  25. Landau LD, Lifshits EM (1987) Fluid Mechanics. Butterworth-Heinemann

    Google Scholar 

  26. Labuntsov DA, Kryukov AP (1979) An analysis of intensive evaporation and condensation. Int J Heat Mass Transf 22:989–1002

    Article  MATH  Google Scholar 

  27. Rose JW (2000) Accurate approximate equations for intensive sub-sonic evaporation. Int J Heat Mass Transf 43:3869–3875

    Article  MATH  Google Scholar 

  28. Aristov VV (2001) Direct methods for solving the Boltzmann equation and study of non-equilibrium flows. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  29. Zudin YB (2015) Approximate kinetic analysis of intense evaporation. J Engng Phys Thermophys 88(4):1015–1022

    Article  Google Scholar 

  30. Zudin YB (2015) The approximate kinetic analysis of strong condensation. Thermophys Aeromech 22(1):73–84

    Article  Google Scholar 

  31. Zudin YB (2016) Linear kinetic analysis of evaporation and condensation. Thermophys Aeromech 23(3):437–449

    Article  Google Scholar 

  32. Zudin YB (2015) Binary schemes of vapor bubble growth. J Eng Phys Thermophys 88(3):575–586

    Article  Google Scholar 

  33. Zudin YB, Zenin VV (2016) ”Pressure blocking” effect in the growing vapor bubble in a highly Superheated Liquid. J. Engng Phys. Thermophys. 89(5):1141–1151

    Article  Google Scholar 

  34. Avdeev AA, Zudin YB (2011) Vapor condensation upon transversal flow around a cylinder (limiting heat exchange laws). High Temp 49(4):558–565

    Article  Google Scholar 

  35. Avdeev AA, Balunov BF, Zudin YB, Rybin RA (2009) An experimental investigation of heat transfer in a pebble bed. High Temp 47:692–700

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Zudin, Y.B. (2018). Introduction to the Problem. In: Non-equilibrium Evaporation and Condensation Processes. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-67306-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67306-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67151-2

  • Online ISBN: 978-3-319-67306-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics