In Situ Laminography Investigation of Damage Evolution in S355 Base Material

  • Haoyun TuEmail author
Part of the Springer Theses book series (Springer Theses)


The ARAMIS system introduced in the previous chapter has been used monitoring the crack propagation for the C(T)-specimen extracted from the S355 base material. The ARAMIS system allows only observing crack propagation at the surface of the object, the evolution of void initiation, growth and coalescence inside the material remains unknown. In order to understand the 3D damage evolution and to show the nature of crack propagation during the material deformation process, it is necessary to adopt a technique to display the imaging of the damage.


S355 Base Material Damage Evolution Material Deformation Process Crack Mouth Opening Displacement (CMOD) Laminographic Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. AmiraR@5, Amira User’s Guide (VSG—Visualization Sciences Group, 2009)Google Scholar
  2. W. Bleck, W. Dahl, A. Nonn, L. Amlung, M. Feldmann, D. Schäfer, B. Eichler, Numerical and experimental analyses of damage behaviour of steel moment connection. Eng. Fract. Mech. 76, 1531–1547 (2009)CrossRefGoogle Scholar
  3. Y. Cheng, In situ synchrotron radiation computed laminographz for materials failure analysis. Dissertation, Albert-Ludwigs-Universität Freiburg (2013)Google Scholar
  4. W.M. Garrison, N.R. Moody, Ductile fracture. J. Phys. Chem. Solids 48, 1035–1074 (1987)CrossRefGoogle Scholar
  5. L. Helfen, T. Baumbach, P. Pernot, P. Cloetens, H. Stanzick, K. Schladitz, J. Banhart, Investigation of pore initiation in metal foams by synchrotron-radiation tomography. Appl. Phys. Lett. 86, 231907-1–231907-3 (2005)Google Scholar
  6. L. Helfen, A. Myagotin, P. Mikulik, P. Pernot, A. Voropaev, M. Elyyan, M. DiMichiel, J. Baruchel, T. Baumbach, On the implementation of computed laminography using synchrotron radiation. Rev. Sci. Instrum. 82, 063702-1–063702-8 (2011)CrossRefGoogle Scholar
  7. Image J User Guide, I J 1.46r (2012)Google Scholar
  8. T.F. Morgeneyer, L. Helfen, I. Sinclair, H. Proudhon, F. Xu, T. Baumbach, Ductile crack initiation and propagation assessed via in situ synchrotron radiation-computed laminography. Scripta Mater. 65, 1010–1013 (2011)CrossRefGoogle Scholar
  9. T.F. Morgeneyer, L. Helfen, H. Mubarak, F. Hild, 3D digital volume correlation of synchrotron radiation laminography images of ductile crack initiation: an initial feasibility study. Exp. Mech. 53, 543–556 (2013)CrossRefGoogle Scholar
  10. T.F. Morgeneyer, T.T. Thomas, L. Helfen, T. Baumbach, I. Sinclair, S. Roux, F. Hild, In situ 3-D observation of early strain localization during failure of thin Al alloy (2198) sheet. Acta Mater. 69, 78–91 (2014)CrossRefGoogle Scholar
  11. K. Nahshon, J.W. Hutchinson, Modification of the Gurson model for shear failure. Eur. J. Mech. A. Solids 27, 1–17 (2008)CrossRefGoogle Scholar
  12. Y. Shen, T.F. Morgeneyer, J. Garnier, L. Allais, L. Helfen, J. Crépin, Three-dimensional quantitative in situ study of crack initiation and propagation in AA6061 aluminum alloy sheets via synchrotron laminography and finite-element simulations. Acta Mater. 61, 2571–2582 (2013)CrossRefGoogle Scholar
  13. T. Ueda, L. Helfen, T.F. Morgeneyer, In situ laminography study of three-dimensional individual void shape evolution at crack initiation and comparison with Gurson-Tvergaard Needleman-type simulations. Acta Mater. 78, 254–270 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.School of Aerospace Engineering and Applied MechanicsTongji UniversityShanghaiChina

Personalised recommendations