Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 512 Accesses

Abstract

Fracture is a problem which troubles structural engineers for centuries. People have been trying to answer when, where, and why the structures fail. Scientists have been trying to investigate the fracture mechanisms of complex components, e.g., the weldment, as the fracture behaviour of weldments influences the crack growth in structures which affects the lifetime and safety of the components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • T. L. Anderson, Fracture Mechanics: Fundamentals and Applications. 3rd edn. (CRC Press, 2005)

    Google Scholar 

  • M. Anvari, I. Scheider, C. Thaulow, Simulation of dynamic ductile crack growth using strain-rate and triaxiality-dependent cohesive elements. Eng. Fract. Mech. 73, 2210–2228 (2006)

    Article  Google Scholar 

  • ARAMIS, User manual—software, ARAMIS V6.1, GOM mbH, 2008

    Google Scholar 

  • G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)

    Article  Google Scholar 

  • J. A. Begley, J. D. Landes, in Fracture Mechanics, The J-integral as a fracture criterion (ASTM STP 514 1972), pp. 1–23

    Google Scholar 

  • F.M. Beremin, A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metall. Trans. A 14A, 2277–2287 (1983)

    Article  Google Scholar 

  • J. Bishop, R. Hill, A theoretical derivation of the plastic properties of a polycrystalline face-centred metal. Phil. Mag. 42, 1298–1307 (1951)

    Article  Google Scholar 

  • W. Brocks, Computational Fracture Mechanics, in Continuum Scale Simulation of Engineering Materials: Fundamentals—Microstructures—Process Applications, ed. by F. Roters, F. Barlat, L.Q. Chen (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004)

    Google Scholar 

  • P. Cambrésy, Damage and fracture mechanisms investigations of an aluminium laser beam weld. Dissertation, GKSS-Forschungszentrum Geesthacht, (2006)

    Google Scholar 

  • G. Çam, M. Koçak, J.F. Dos Santos, Developments in laser welding of metallic materials and characterization of the joints. Weld. World 43, 13–26 (1999)

    Google Scholar 

  • O. Chabanet, D. Steglich, J. Besson, V. Heitmann, D. Hellmann, W. Brocks, Predicting crack growth resistance of aluminium sheets. Comp. Mater. Sci. 26, 1–12 (2003)

    Article  Google Scholar 

  • C.R. Chen, O. Kolednik, I. Scheider, T. Siegmund, A. Tatschl, F.D. Fischer, On the determination of the cohesive zone parameters for the modelling of microductile crack growth in thick specimens. Int. J. Fract. 120, 417–536 (2003)

    Article  Google Scholar 

  • Y. Cheng, V. Altapova, L. Helfen, F. Xu, T. dos Santos Rolo, P. Vagovič, M. Fiederle, T. Baumbach, Multi-contrast computed laminography at ANKA light source. J. Phys: Conf. Ser. 463, 012038 (2013)

    Google Scholar 

  • C.C. Chu, A. Needleman, Void nucleation effects in biaxially stretched sheets. J. Eng. Mater. Technol. 102, 249–256 (1980)

    Article  Google Scholar 

  • P. Cloetens, R. Barrett, J. Baruchel, J.P. Guigay, M. Schlenker, Phase objects in synchrotron radiation hard x-ray imaging. J. Phys. D: Appl. Phys. 29, 133–146 (1996)

    Article  Google Scholar 

  • A. Cornec, I. Scheider, K.-H. Schwalbe, On the practical application of the cohesive model. Eng. Fract. Mech. 70, 1963–1987 (2003)

    Article  Google Scholar 

  • D.S. Dugdale, Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)

    Article  Google Scholar 

  • A.G. Franklin, Comparison between a quantitative microscope and chemical methods for assessment of non-metallic inclusions. J. Iron Steel Inst. 207, 181–186 (1969)

    Google Scholar 

  • http://www.gom.com/, (2014)

  • L. Graziani, M. Knećb, T. Sadowski, M.D. Orazio, S. Lenci, Measurement of R-curve in clay brick blocks using optical measuring technique. Eng. Fract. Mech. 121–122, 1–10 (2014)

    Article  Google Scholar 

  • A.A. Griffith, The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. A 211, 163–198 (1920)

    Google Scholar 

  • J.R. Griffiths, An elastic-plastic stress analysis for a notched bar in plane strain bending. J. Mech. Phys. Solids 19, 419–431 (1971)

    Article  Google Scholar 

  • A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth, Part I—yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)

    Article  Google Scholar 

  • L. Helfen, T. Baumbach, P. Pernot, P. Cloetens, H. Stanzick, K. Schladitz, J. Banhart, Investigation of pore initiation in metal foams by synchrotron-radiation tomography. Appl. Phys. Lett. 86, 231907-1–231907-3 (2005)

    Google Scholar 

  • L. Helfen, A. Myagotin, P. Mikulik, P. Pernot, A. Voropaev, M. Elyyan, M. DiMichiel, J. Baruchel, T. Baumbach, On the implementation of computed laminography using synchrotron radiation. Rev. Sci. Instrum. 82, 063702-1–063702-8 (2011)

    Article  Google Scholar 

  • A. Hillerborg, M. Modéer, P.-E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Conc. Res. 6, 773–782 (1976)

    Article  Google Scholar 

  • Y. Huang, Accurate dilatation rates for spherical voids in triaxial stress fields. J. Appl. Mech. Trans. ASME 58, 1084–1086 (1991)

    Article  Google Scholar 

  • J. Huang, S. Schmauder, U. Weber, S. Geier, Micromechanical modelling of the elastoplastic behaviour of nanodispersed elastomer particle-modified PA 6. Comp. Mater. Sci. 52, 107–111 (2011)

    Article  Google Scholar 

  • G.R. Irwin, Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)

    Google Scholar 

  • S. Kou, Welding metallurgy, 2nd edn. (John Wiley & Sons. Inc., Hoboken, New Jersey, 2003)

    Google Scholar 

  • K. Kussmaul, U. Eisele, M. Seidenfuss, in Fatigue & Fract Mech in Press Vess & Piping, ed. by Mehta, et al. On the Applicability of Local Approach Models for the Determination of the Failure Behaviour of Steels with Different Toughness, vol 304 (1995), pp. 17–25

    Google Scholar 

  • L. Laiarinandrasana, T.F. Morgeneyer, H. Proudhon, F. N’guyen, E. Maire, Effect of multiaxial stress state on morphology and spatial distribution of voids in deformed semicrystalline polymer assessed by x-ray tomography. Macromolecules 45, 4658–4668 (2012)

    Article  Google Scholar 

  • J. D. Landes, J. A. Begley, The J-Integral as a fracture criterion (ASTM STP 514, American Society for testing and Materials, Philadelphia, 1972), pp. 1–20

    Google Scholar 

  • W. Li, T. Siegmund, An analysis of crack growth in thin-sheet metal via a cohesive zone model. Eng. Fract. Mech. 69, 2073–2093 (2002)

    Article  Google Scholar 

  • G. Lin, A. Cornec, K.-H. Schwalbe, Three-dimensional finite element simulation of crack extension in aluminum alloy 2024-FC. Fatigue Fract. Eng. Mater. Struct. 21, 1159–1173 (1998)

    Article  Google Scholar 

  • G. Lin, Numerical investigation of crack growth behaviour using a cohesive zone model. Ph.D. thesis, TU Hamburg-Harburg, Geesthacht, (1998)

    Google Scholar 

  • G. Lin, X.-G. Meng, A. Cornec, K.-H. Schwalbe, The effect of strength mis-match on mechanical performance of weld joints. Int. J. Fract. 96, 37–54 (1999)

    Article  Google Scholar 

  • A. Mohanta, Numerical determination of failure curves. Master thesis, University of Stuttgart, (2003)

    Google Scholar 

  • T.F. Morgeneyer, J. Besson, H. Proudhon, M.J. Starink, I. Sinclair, Experimental and numerical analysis of toughness anisotropy in AA2139 Al-alloy sheet. Acta Mater. 57, 3902–3915 (2009)

    Article  Google Scholar 

  • T.F. Morgeneyer, L. Helfen, H. Mubarak, F. Hild, 3D Digital Volume Correlation of Synchrotron Radiation Laminography images of ductile crack initiation: An initial feasibility study. Exp. Mech. 53, 543–556 (2013)

    Article  Google Scholar 

  • A. Needleman, J. R, in Mechanics of Metal Sheet Forming, Rice, Limits to Ductility by Plastic Flow Localization, (1978), pp. 237–267

    Google Scholar 

  • A. Needleman, A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. ASME 54, 525–531 (1987)

    Article  Google Scholar 

  • A. Needleman, An analysis of decohesion along an imperfect interface. I J Fract 42, 21–40 (1990)

    Article  Google Scholar 

  • A. Needleman, V. Tvergaard, A micromechanical analysis of ductile-brittle transition at a weld. Eng. Fract. Mech. 62, 317–338 (1999)

    Article  Google Scholar 

  • P. Nègre, D. Steglich, W. Brocks, Numerical simulation of crack extension in aluminium welds. Comput. Mater. Sci. 28, 723–731 (2003)

    Article  Google Scholar 

  • P. Nègre, D. Steglich, W. Brocks, Crack extension in aluminium welds: a numerical approach using the Gurson-Tvergaard-Needleman model. Eng. Fract. Mech. 71, 2365–2383 (2004)

    Article  Google Scholar 

  • K.L. Nielsen, Ductile damage development in friction stir welded aluminum (AA2024) joints. Eng. Fract. Mech. 71, 2795–2811 (2008)

    Article  Google Scholar 

  • A. Nonn, W. Dahl, W. Bleck, Numerical modelling of damage behaviour of laser-hybrid welds. Eng. Fract. Mech. 75, 3251–3263 (2008)

    Article  Google Scholar 

  • K.A. Nugent, T.E. Gureyev, D.F. Cookson, D. Paganin, Z. Barnea, Phys. Rev. Lett. 77, 2961–2964 (1996)

    Article  Google Scholar 

  • E. Østby, C. Thaulow, Z.L. Zhang, Numerical simulations of specimen size and mismatch effects in ductile crack growth—Part I: Tearing resistance and crack growth paths. Eng. Fract. Mech. 74, 1770–1792 (2007a)

    Article  Google Scholar 

  • E. Østby, C. Thaulow, Z.L. Zhang, Numerical simulations of specimen size and mismatch effects in ductile crack growth - Part II: Near-tip stress fields. Eng. Fract. Mech. 74, 1793–1809 (2007b)

    Article  Google Scholar 

  • D. Paganin, S.C. Mayo, T.E. Gureyev, P.R. Miller, S.W. Wilkins, Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206, 33–40 (2002)

    Article  Google Scholar 

  • J.R. Rice, A path independent integral and the approximate analysis of strain concentrations by notches and cracks. J. Appl. Mech. 35, 379–386 (1968)

    Article  Google Scholar 

  • J.R. Rice, D.M. Tracey, On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids 17, 201–217 (1969)

    Article  Google Scholar 

  • F. Rivalin, A. Pineau, M. Di Fant, J. Besson, Ductile tearing of pipeline-steel wide plates: I. Dynamic and quasi-static experiments, Eng. Fract. Mech. 68, 329–345 (2001)

    Google Scholar 

  • F. Rivalin, J. Besson, A. Pineau, M. Di Fant, Ductile tearing of pipeline-steel wide plates: II. Modeling of in-plane crack propagation. Eng. Fract. Mech. 68, 347–364 (2001)

    Google Scholar 

  • G. Rousselier, Ductile fracture models and their potential in local approach of fracture. Nucl. Eng. Des. 105, 97–111 (1987)

    Article  Google Scholar 

  • G. Rousselier, in Handbook of materials behaviour models, The Rousselier model for porous metal plasticity and ductile fracture. (2001), pp. 436–445

    Google Scholar 

  • T. Sadowski, M. Knec, P. Golewski, Experimental investigations and numerical modelling of steel adhesive joints reinforced by rivets. Int. J. Adhes. Adhes. 30, 338–346 (2010)

    Article  Google Scholar 

  • M.K. Samal, M. Seidenfuss, E. Roos, B.K. Dutta, H.S. Kushwaha, Finite element formulation of a new nonlocal damage model. Finite Elem. Anal. Des. 44, 358–371 (2008)

    Article  Google Scholar 

  • M.K. Samal, M. Seidenfuss, E. Roos, A new mesh-independent Rousselier’s damage model: Finite element implementation and experimental verification. Int. J. Mech. Sci. 51, 619–630 (2009)

    Article  Google Scholar 

  • J.F. Dos Santos, G. Çam, F. Torster, A. Insfran, S. Riekehr, V. Ventzke, Properties of power beam welded steel, Al-and Ti alloys: Significance of strength mismatch. Weld World 44, 42–64 (2000)

    Google Scholar 

  • S. Schmauder, D. Uhlmann, G. Zies, Experimental and numerical investigations of two material states of the material 15NiCuMoNb5 (WB 36). Comp. Mater. Sci. 25, 174–192 (2002)

    Article  Google Scholar 

  • S. Schmauder, L. J. Mishnaevsky, Micromechanics and Nanosimultion of Metals and Composites, ed. by S. Schmauder, L. J. Mishnaevsky (Springer-Verlag, Berlin, Heidelberg 2009), p. 420

    Google Scholar 

  • K.-H. Schwalbe, I. Scheider, A. Cornec, SIAM CM09—The SIAM method for application cohesive models of the damage behaviour of engineering materials and structures. GKSS report, 2009/1, GKSS-Forschungszentrum Geesthacht, (2009)

    Google Scholar 

  • I. Scheider, Bruchmechanische Bewertung von Laserschweißverbindungen durch numerische Rissfortschrittsimulation mit dem Kohäsivzonenmodell. Dissertation, TU Hamburg-Harburg, Geesthacht, (2001)

    Google Scholar 

  • I. Scheider, W. Brocks, The effect of the traction separation law on the results of cohesive zone crack propagation analyses. Key Eng. Mater. 251–252, 313–318 (2003)

    Article  Google Scholar 

  • Seib, Residual strength analysis of laser beam and friction stir welded aluminum panels for aerospace applications. Dissertation, TU Hamburg-Harburg, Geesthacht, (2006)

    Google Scholar 

  • H. P. Seebich, Mikromechanisch basierte Schädigungsmodelle zur Beschreibung des Versagensablaufs ferritischer Bauteile. Dissertation, Universität Stuttgart, (2007)

    Google Scholar 

  • M. Seidenfuss, Untersuchungen zur Beschreibung des Versagensverhaltens mit Hilfe von Schädigungsmodellen am Beispiel des Werkstoffs 20MnMoNi55. Dissertation, Universität Stuttgart, (1992)

    Google Scholar 

  • Y. Shen, T.F. Morgeneyer, J. Garnier, L. Allais, L. Helfen, J. Crépin, Three-dimensional quantitative in situ study of crack initiation and propagation in AA6061 aluminum alloy sheets via synchrotron laminography and finite-element simulations. Acta Mater. 61, 2571–2582 (2013)

    Article  Google Scholar 

  • T. Siegmund, A. Needleman, A numerical study of dynamic crack growth in elastic-viscoplastic solids. Int. J. Solids Struct. 34, 769–787 (1997)

    Article  Google Scholar 

  • M. Springmann, M. Kuna, Identification of material parameters of the Gurson—Tvergaard—Needleman model by combined experimental and numerical techniques. Comp. Mater. Sci. 32, 544–552 (2005)

    Article  Google Scholar 

  • B. Tanguy, T.T. Luu, G. Perrin, A. Pineau, J. Besson, Plastic and damage behaviour of a high strength X100 pipeline steel: Experiments and modeling. Int. J. Press. Vessels Piping 85, 322–335 (2008)

    Article  Google Scholar 

  • H.Y. Tu, S. Schmauder, U. Weber, Y. Rudnik, V. Ploshikhin, Numerical simulation and experimental investigation of the damage behavior on electron beam welded joints. Procedia Eng. 10, 875–880 (2011)

    Article  Google Scholar 

  • H.Y. Tu, S. Schmauder, U. Weber, Y. Rudnik, V. Ploshikhin, Simulation of the damage behavior of electron beam welded joints with the Rousselier model. Eng. Fract. Mech. 103, 153–161 (2013)

    Article  Google Scholar 

  • H.Y. Tu, S. Schmauder, U. Weber, Simulation of the fracture behavior of an S355 electron beam welded joint by cohesive zone modeling. Eng. Fract. Mech. 163, 303–312 (2016)

    Article  Google Scholar 

  • V. Tvergaard, On localization in ductile materials containing spherical voids. Int. J. Fract. 18, 237–252 (1982a)

    Google Scholar 

  • V. Tvergaard, Influence of void nucleation on ductile shear fracture at a free surface. J. Mech. Phys. Solids 30, 399–425 (1982b)

    Article  Google Scholar 

  • V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 38, 157–169 (1984)

    Article  Google Scholar 

  • V. Tvergaard, On the analysis of ductile fracture mechanisms. Proc. Int. Conf. Fracture, ICF7 (1989), 159–179

    Google Scholar 

  • V. Tvergaard, J.W. Hutchinson, The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J. Mech. Phys. Solids 40, 1377–1397 (1992)

    Article  Google Scholar 

  • V. Tvergaard, A. Needleman, Analysis of the Charpy V-notch test for welds. Eng. Fract. Mech. 65, 627–643 (2000)

    Article  Google Scholar 

  • V. Tvergaard, A. Needleman, 3D analyses of the effect of weld orientation in Charpy specimens. Eng. Fract. Mech. 71, 2179–2195 (2004)

    Article  Google Scholar 

  • D. Uhlmann, Reactor Safety Research—Project No. 1501029: Material characterization of the material 15 NiCuMoNb 5 including the determination of the local approach parameter for the Rousselier model for two material states. Report-No: 878701004, MPA Stuttgart, (1999)

    Google Scholar 

  • U. Weber, A. Mohanta, S. Schmauder, Numerical determination of parameterised failure curves for ductile structural materials. Int. J. Mat. Res. 98, 1071–1080 (2007)

    Article  Google Scholar 

  • L. Xia, C.F. Shih, Ductile crack growth—III. Transition to cleavage fracture incorporating statistics. J. Mech. Phys. Solids 44, 603–639 (1996)

    Article  Google Scholar 

  • F. Xu, L. Helfen, A.J. Moffat, G. Johnson, I. Sinclair, T. Baumbach, J. Synchrotron Radiat. 17, 222–226 (2010)

    Article  Google Scholar 

  • H. Yuan, G. Lin, A. Cornec, Verification of a cohesive zone model for ductile fracture. J Eng. Mater. Technol. 118, 192–200 (1996)

    Article  Google Scholar 

  • Z. L. Zhang, C. Thaulow, J. Odegard, A complete Gurson model approach for ductile fracture. Eng. Fract. Mech. 67, 155–168 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoyun Tu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Tu, H. (2018). Scientific Background. In: Numerical Simulation and Experimental Investigation of the Fracture Behaviour of an Electron Beam Welded Steel Joint. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-67277-9_2

Download citation

Publish with us

Policies and ethics