Numerical Simulation and Experimental Investigation of the Fracture Behaviour of an Electron Beam Welded Steel Joint pp 5-25 | Cite as
Scientific Background
Chapter
First Online:
- 384 Downloads
Abstract
Fracture is a problem which troubles structural engineers for centuries. People have been trying to answer when, where, and why the structures fail. Scientists have been trying to investigate the fracture mechanisms of complex components, e.g., the weldment, as the fracture behaviour of weldments influences the crack growth in structures which affects the lifetime and safety of the components.
References
- T. L. Anderson, Fracture Mechanics: Fundamentals and Applications. 3rd edn. (CRC Press, 2005)Google Scholar
- M. Anvari, I. Scheider, C. Thaulow, Simulation of dynamic ductile crack growth using strain-rate and triaxiality-dependent cohesive elements. Eng. Fract. Mech. 73, 2210–2228 (2006)CrossRefGoogle Scholar
- ARAMIS, User manual—software, ARAMIS V6.1, GOM mbH, 2008Google Scholar
- G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)CrossRefGoogle Scholar
- J. A. Begley, J. D. Landes, in Fracture Mechanics, The J-integral as a fracture criterion (ASTM STP 514 1972), pp. 1–23Google Scholar
- F.M. Beremin, A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metall. Trans. A 14A, 2277–2287 (1983)CrossRefGoogle Scholar
- J. Bishop, R. Hill, A theoretical derivation of the plastic properties of a polycrystalline face-centred metal. Phil. Mag. 42, 1298–1307 (1951)CrossRefGoogle Scholar
- W. Brocks, Computational Fracture Mechanics, in Continuum Scale Simulation of Engineering Materials: Fundamentals—Microstructures—Process Applications, ed. by F. Roters, F. Barlat, L.Q. Chen (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004)Google Scholar
- P. Cambrésy, Damage and fracture mechanisms investigations of an aluminium laser beam weld. Dissertation, GKSS-Forschungszentrum Geesthacht, (2006)Google Scholar
- G. Çam, M. Koçak, J.F. Dos Santos, Developments in laser welding of metallic materials and characterization of the joints. Weld. World 43, 13–26 (1999)Google Scholar
- O. Chabanet, D. Steglich, J. Besson, V. Heitmann, D. Hellmann, W. Brocks, Predicting crack growth resistance of aluminium sheets. Comp. Mater. Sci. 26, 1–12 (2003)CrossRefGoogle Scholar
- C.R. Chen, O. Kolednik, I. Scheider, T. Siegmund, A. Tatschl, F.D. Fischer, On the determination of the cohesive zone parameters for the modelling of microductile crack growth in thick specimens. Int. J. Fract. 120, 417–536 (2003)CrossRefGoogle Scholar
- Y. Cheng, V. Altapova, L. Helfen, F. Xu, T. dos Santos Rolo, P. Vagovič, M. Fiederle, T. Baumbach, Multi-contrast computed laminography at ANKA light source. J. Phys: Conf. Ser. 463, 012038 (2013)Google Scholar
- C.C. Chu, A. Needleman, Void nucleation effects in biaxially stretched sheets. J. Eng. Mater. Technol. 102, 249–256 (1980)CrossRefGoogle Scholar
- P. Cloetens, R. Barrett, J. Baruchel, J.P. Guigay, M. Schlenker, Phase objects in synchrotron radiation hard x-ray imaging. J. Phys. D: Appl. Phys. 29, 133–146 (1996)CrossRefGoogle Scholar
- A. Cornec, I. Scheider, K.-H. Schwalbe, On the practical application of the cohesive model. Eng. Fract. Mech. 70, 1963–1987 (2003)CrossRefGoogle Scholar
- D.S. Dugdale, Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)CrossRefGoogle Scholar
- A.G. Franklin, Comparison between a quantitative microscope and chemical methods for assessment of non-metallic inclusions. J. Iron Steel Inst. 207, 181–186 (1969)Google Scholar
- http://www.gom.com/, (2014)
- L. Graziani, M. Knećb, T. Sadowski, M.D. Orazio, S. Lenci, Measurement of R-curve in clay brick blocks using optical measuring technique. Eng. Fract. Mech. 121–122, 1–10 (2014)CrossRefGoogle Scholar
- A.A. Griffith, The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. A 211, 163–198 (1920)Google Scholar
- J.R. Griffiths, An elastic-plastic stress analysis for a notched bar in plane strain bending. J. Mech. Phys. Solids 19, 419–431 (1971)CrossRefGoogle Scholar
- A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth, Part I—yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)CrossRefGoogle Scholar
- L. Helfen, T. Baumbach, P. Pernot, P. Cloetens, H. Stanzick, K. Schladitz, J. Banhart, Investigation of pore initiation in metal foams by synchrotron-radiation tomography. Appl. Phys. Lett. 86, 231907-1–231907-3 (2005)Google Scholar
- L. Helfen, A. Myagotin, P. Mikulik, P. Pernot, A. Voropaev, M. Elyyan, M. DiMichiel, J. Baruchel, T. Baumbach, On the implementation of computed laminography using synchrotron radiation. Rev. Sci. Instrum. 82, 063702-1–063702-8 (2011)CrossRefGoogle Scholar
- A. Hillerborg, M. Modéer, P.-E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Conc. Res. 6, 773–782 (1976)CrossRefGoogle Scholar
- Y. Huang, Accurate dilatation rates for spherical voids in triaxial stress fields. J. Appl. Mech. Trans. ASME 58, 1084–1086 (1991)CrossRefGoogle Scholar
- J. Huang, S. Schmauder, U. Weber, S. Geier, Micromechanical modelling of the elastoplastic behaviour of nanodispersed elastomer particle-modified PA 6. Comp. Mater. Sci. 52, 107–111 (2011)CrossRefGoogle Scholar
- G.R. Irwin, Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)Google Scholar
- S. Kou, Welding metallurgy, 2nd edn. (John Wiley & Sons. Inc., Hoboken, New Jersey, 2003)Google Scholar
- K. Kussmaul, U. Eisele, M. Seidenfuss, in Fatigue & Fract Mech in Press Vess & Piping, ed. by Mehta, et al. On the Applicability of Local Approach Models for the Determination of the Failure Behaviour of Steels with Different Toughness, vol 304 (1995), pp. 17–25Google Scholar
- L. Laiarinandrasana, T.F. Morgeneyer, H. Proudhon, F. N’guyen, E. Maire, Effect of multiaxial stress state on morphology and spatial distribution of voids in deformed semicrystalline polymer assessed by x-ray tomography. Macromolecules 45, 4658–4668 (2012)CrossRefGoogle Scholar
- J. D. Landes, J. A. Begley, The J-Integral as a fracture criterion (ASTM STP 514, American Society for testing and Materials, Philadelphia, 1972), pp. 1–20Google Scholar
- W. Li, T. Siegmund, An analysis of crack growth in thin-sheet metal via a cohesive zone model. Eng. Fract. Mech. 69, 2073–2093 (2002)CrossRefGoogle Scholar
- G. Lin, A. Cornec, K.-H. Schwalbe, Three-dimensional finite element simulation of crack extension in aluminum alloy 2024-FC. Fatigue Fract. Eng. Mater. Struct. 21, 1159–1173 (1998)CrossRefGoogle Scholar
- G. Lin, Numerical investigation of crack growth behaviour using a cohesive zone model. Ph.D. thesis, TU Hamburg-Harburg, Geesthacht, (1998)Google Scholar
- G. Lin, X.-G. Meng, A. Cornec, K.-H. Schwalbe, The effect of strength mis-match on mechanical performance of weld joints. Int. J. Fract. 96, 37–54 (1999)CrossRefGoogle Scholar
- A. Mohanta, Numerical determination of failure curves. Master thesis, University of Stuttgart, (2003)Google Scholar
- T.F. Morgeneyer, J. Besson, H. Proudhon, M.J. Starink, I. Sinclair, Experimental and numerical analysis of toughness anisotropy in AA2139 Al-alloy sheet. Acta Mater. 57, 3902–3915 (2009)CrossRefGoogle Scholar
- T.F. Morgeneyer, L. Helfen, H. Mubarak, F. Hild, 3D Digital Volume Correlation of Synchrotron Radiation Laminography images of ductile crack initiation: An initial feasibility study. Exp. Mech. 53, 543–556 (2013)CrossRefGoogle Scholar
- A. Needleman, J. R, in Mechanics of Metal Sheet Forming, Rice, Limits to Ductility by Plastic Flow Localization, (1978), pp. 237–267Google Scholar
- A. Needleman, A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. ASME 54, 525–531 (1987)CrossRefGoogle Scholar
- A. Needleman, An analysis of decohesion along an imperfect interface. I J Fract 42, 21–40 (1990)CrossRefGoogle Scholar
- A. Needleman, V. Tvergaard, A micromechanical analysis of ductile-brittle transition at a weld. Eng. Fract. Mech. 62, 317–338 (1999)CrossRefGoogle Scholar
- P. Nègre, D. Steglich, W. Brocks, Numerical simulation of crack extension in aluminium welds. Comput. Mater. Sci. 28, 723–731 (2003)CrossRefGoogle Scholar
- P. Nègre, D. Steglich, W. Brocks, Crack extension in aluminium welds: a numerical approach using the Gurson-Tvergaard-Needleman model. Eng. Fract. Mech. 71, 2365–2383 (2004)CrossRefGoogle Scholar
- K.L. Nielsen, Ductile damage development in friction stir welded aluminum (AA2024) joints. Eng. Fract. Mech. 71, 2795–2811 (2008)CrossRefGoogle Scholar
- A. Nonn, W. Dahl, W. Bleck, Numerical modelling of damage behaviour of laser-hybrid welds. Eng. Fract. Mech. 75, 3251–3263 (2008)CrossRefGoogle Scholar
- K.A. Nugent, T.E. Gureyev, D.F. Cookson, D. Paganin, Z. Barnea, Phys. Rev. Lett. 77, 2961–2964 (1996)CrossRefGoogle Scholar
- E. Østby, C. Thaulow, Z.L. Zhang, Numerical simulations of specimen size and mismatch effects in ductile crack growth—Part I: Tearing resistance and crack growth paths. Eng. Fract. Mech. 74, 1770–1792 (2007a)CrossRefGoogle Scholar
- E. Østby, C. Thaulow, Z.L. Zhang, Numerical simulations of specimen size and mismatch effects in ductile crack growth - Part II: Near-tip stress fields. Eng. Fract. Mech. 74, 1793–1809 (2007b)CrossRefGoogle Scholar
- D. Paganin, S.C. Mayo, T.E. Gureyev, P.R. Miller, S.W. Wilkins, Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206, 33–40 (2002)CrossRefGoogle Scholar
- J.R. Rice, A path independent integral and the approximate analysis of strain concentrations by notches and cracks. J. Appl. Mech. 35, 379–386 (1968)CrossRefGoogle Scholar
- J.R. Rice, D.M. Tracey, On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids 17, 201–217 (1969)CrossRefGoogle Scholar
- F. Rivalin, A. Pineau, M. Di Fant, J. Besson, Ductile tearing of pipeline-steel wide plates: I. Dynamic and quasi-static experiments, Eng. Fract. Mech. 68, 329–345 (2001)Google Scholar
- F. Rivalin, J. Besson, A. Pineau, M. Di Fant, Ductile tearing of pipeline-steel wide plates: II. Modeling of in-plane crack propagation. Eng. Fract. Mech. 68, 347–364 (2001)Google Scholar
- G. Rousselier, Ductile fracture models and their potential in local approach of fracture. Nucl. Eng. Des. 105, 97–111 (1987)CrossRefGoogle Scholar
- G. Rousselier, in Handbook of materials behaviour models, The Rousselier model for porous metal plasticity and ductile fracture. (2001), pp. 436–445Google Scholar
- T. Sadowski, M. Knec, P. Golewski, Experimental investigations and numerical modelling of steel adhesive joints reinforced by rivets. Int. J. Adhes. Adhes. 30, 338–346 (2010)CrossRefGoogle Scholar
- M.K. Samal, M. Seidenfuss, E. Roos, B.K. Dutta, H.S. Kushwaha, Finite element formulation of a new nonlocal damage model. Finite Elem. Anal. Des. 44, 358–371 (2008)CrossRefGoogle Scholar
- M.K. Samal, M. Seidenfuss, E. Roos, A new mesh-independent Rousselier’s damage model: Finite element implementation and experimental verification. Int. J. Mech. Sci. 51, 619–630 (2009)CrossRefGoogle Scholar
- J.F. Dos Santos, G. Çam, F. Torster, A. Insfran, S. Riekehr, V. Ventzke, Properties of power beam welded steel, Al-and Ti alloys: Significance of strength mismatch. Weld World 44, 42–64 (2000)Google Scholar
- S. Schmauder, D. Uhlmann, G. Zies, Experimental and numerical investigations of two material states of the material 15NiCuMoNb5 (WB 36). Comp. Mater. Sci. 25, 174–192 (2002)CrossRefGoogle Scholar
- S. Schmauder, L. J. Mishnaevsky, Micromechanics and Nanosimultion of Metals and Composites, ed. by S. Schmauder, L. J. Mishnaevsky (Springer-Verlag, Berlin, Heidelberg 2009), p. 420Google Scholar
- K.-H. Schwalbe, I. Scheider, A. Cornec, SIAM CM09—The SIAM method for application cohesive models of the damage behaviour of engineering materials and structures. GKSS report, 2009/1, GKSS-Forschungszentrum Geesthacht, (2009)Google Scholar
- I. Scheider, Bruchmechanische Bewertung von Laserschweißverbindungen durch numerische Rissfortschrittsimulation mit dem Kohäsivzonenmodell. Dissertation, TU Hamburg-Harburg, Geesthacht, (2001)Google Scholar
- I. Scheider, W. Brocks, The effect of the traction separation law on the results of cohesive zone crack propagation analyses. Key Eng. Mater. 251–252, 313–318 (2003)CrossRefGoogle Scholar
- Seib, Residual strength analysis of laser beam and friction stir welded aluminum panels for aerospace applications. Dissertation, TU Hamburg-Harburg, Geesthacht, (2006)Google Scholar
- H. P. Seebich, Mikromechanisch basierte Schädigungsmodelle zur Beschreibung des Versagensablaufs ferritischer Bauteile. Dissertation, Universität Stuttgart, (2007)Google Scholar
- M. Seidenfuss, Untersuchungen zur Beschreibung des Versagensverhaltens mit Hilfe von Schädigungsmodellen am Beispiel des Werkstoffs 20MnMoNi55. Dissertation, Universität Stuttgart, (1992)Google Scholar
- Y. Shen, T.F. Morgeneyer, J. Garnier, L. Allais, L. Helfen, J. Crépin, Three-dimensional quantitative in situ study of crack initiation and propagation in AA6061 aluminum alloy sheets via synchrotron laminography and finite-element simulations. Acta Mater. 61, 2571–2582 (2013)CrossRefGoogle Scholar
- T. Siegmund, A. Needleman, A numerical study of dynamic crack growth in elastic-viscoplastic solids. Int. J. Solids Struct. 34, 769–787 (1997)CrossRefGoogle Scholar
- M. Springmann, M. Kuna, Identification of material parameters of the Gurson—Tvergaard—Needleman model by combined experimental and numerical techniques. Comp. Mater. Sci. 32, 544–552 (2005)CrossRefGoogle Scholar
- B. Tanguy, T.T. Luu, G. Perrin, A. Pineau, J. Besson, Plastic and damage behaviour of a high strength X100 pipeline steel: Experiments and modeling. Int. J. Press. Vessels Piping 85, 322–335 (2008)CrossRefGoogle Scholar
- H.Y. Tu, S. Schmauder, U. Weber, Y. Rudnik, V. Ploshikhin, Numerical simulation and experimental investigation of the damage behavior on electron beam welded joints. Procedia Eng. 10, 875–880 (2011)CrossRefGoogle Scholar
- H.Y. Tu, S. Schmauder, U. Weber, Y. Rudnik, V. Ploshikhin, Simulation of the damage behavior of electron beam welded joints with the Rousselier model. Eng. Fract. Mech. 103, 153–161 (2013)CrossRefGoogle Scholar
- H.Y. Tu, S. Schmauder, U. Weber, Simulation of the fracture behavior of an S355 electron beam welded joint by cohesive zone modeling. Eng. Fract. Mech. 163, 303–312 (2016)CrossRefGoogle Scholar
- V. Tvergaard, On localization in ductile materials containing spherical voids. Int. J. Fract. 18, 237–252 (1982a)Google Scholar
- V. Tvergaard, Influence of void nucleation on ductile shear fracture at a free surface. J. Mech. Phys. Solids 30, 399–425 (1982b)CrossRefGoogle Scholar
- V. Tvergaard, A. Needleman, Analysis of the cup-cone fracture in a round tensile bar. Acta Metall. 38, 157–169 (1984)CrossRefGoogle Scholar
- V. Tvergaard, On the analysis of ductile fracture mechanisms. Proc. Int. Conf. Fracture, ICF7 (1989), 159–179Google Scholar
- V. Tvergaard, J.W. Hutchinson, The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J. Mech. Phys. Solids 40, 1377–1397 (1992)CrossRefGoogle Scholar
- V. Tvergaard, A. Needleman, Analysis of the Charpy V-notch test for welds. Eng. Fract. Mech. 65, 627–643 (2000)CrossRefGoogle Scholar
- V. Tvergaard, A. Needleman, 3D analyses of the effect of weld orientation in Charpy specimens. Eng. Fract. Mech. 71, 2179–2195 (2004)CrossRefGoogle Scholar
- D. Uhlmann, Reactor Safety Research—Project No. 1501029: Material characterization of the material 15 NiCuMoNb 5 including the determination of the local approach parameter for the Rousselier model for two material states. Report-No: 878701004, MPA Stuttgart, (1999)Google Scholar
- U. Weber, A. Mohanta, S. Schmauder, Numerical determination of parameterised failure curves for ductile structural materials. Int. J. Mat. Res. 98, 1071–1080 (2007)CrossRefGoogle Scholar
- L. Xia, C.F. Shih, Ductile crack growth—III. Transition to cleavage fracture incorporating statistics. J. Mech. Phys. Solids 44, 603–639 (1996)CrossRefGoogle Scholar
- F. Xu, L. Helfen, A.J. Moffat, G. Johnson, I. Sinclair, T. Baumbach, J. Synchrotron Radiat. 17, 222–226 (2010)CrossRefGoogle Scholar
- H. Yuan, G. Lin, A. Cornec, Verification of a cohesive zone model for ductile fracture. J Eng. Mater. Technol. 118, 192–200 (1996)CrossRefGoogle Scholar
- Z. L. Zhang, C. Thaulow, J. Odegard, A complete Gurson model approach for ductile fracture. Eng. Fract. Mech. 67, 155–168 (2000)Google Scholar
Copyright information
© Springer International Publishing AG 2018