Advertisement

Two Are Better Than One: An Algorithm Portfolio Approach to Cloud Resource Management

  • Zoltán Ádám MannEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10465)

Abstract

Several different algorithms have been proposed in recent years for the dynamic optimization of resource allocation in virtualized data centers. The proposed methods range from fast and simple heuristics to exact algorithms that yield optimal results but take much longer. This paper suggests an algorithm portfolio approach in which multiple algorithms coexist. Based on continual monitoring and analysis of the state of the data center, the optimization algorithm that is most suitable is chosen on the fly. This way, the balance between optimization quality and reaction time can be tuned adaptively. Empirical results show that this approach leads to improved overall results.

Notes

Acknowledgments

This work was partially supported by the Hungarian Scientific Research Fund (Grant Nr. OTKA 108947) and by the European Union’s Horizon 2020 research and innovation programme under grant 731678 (RestAssured).

References

  1. 1.
    Ábrahám, E., Corzilius, F., Johnsen, E.B., Kremer, G., Mauro, J.: Zephyrus2: on the fly deployment optimization using SMT and CP technologies. In: Proceedings of the 2nd International Symposium on Dependable Software Engineering, pp. 229–245 (2016)Google Scholar
  2. 2.
    Ahvar, E., Ahvar, S., Mann, Z.A., Crespi, N., Garcia-Alfaro, J., Glitho, R.: CACEV: a cost and carbon emission-efficient virtual machine placement method for green distributed clouds. In: Proceedings of the 13th IEEE International Conference on Services Computing, pp. 275–282 (2016)Google Scholar
  3. 3.
    Bartók, D., Mann, Z.A.: A branch-and-bound approach to virtual machine placement. In: Proceedings of the 3rd HPI Cloud Symposium “Operating the Cloud”, pp. 49–63 (2015)Google Scholar
  4. 4.
    Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Gener. Comput. Syst. 28, 755–768 (2012)CrossRefGoogle Scholar
  5. 5.
    Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurrency Comput. Pract. Exp. 24(13), 1397–1420 (2012)CrossRefGoogle Scholar
  6. 6.
    Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)Google Scholar
  7. 7.
    Cosmo, R.D., Lienhardt, M., Treinen, R., Zacchiroli, S., Zwolakowski, J., Eiche, A., Agahi, A.: Automated synthesis and deployment of cloud applications. In: ACM/IEEE International Conference on Automated Software Engineering, pp. 211–222 (2014)Google Scholar
  8. 8.
    Digital Power Group: The cloud begins with coal - Big data, big networks, big infrastructure, and big power (2013)Google Scholar
  9. 9.
    Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A multi-objective ant colony system algorithm for virtual machine placement in cloud computing. J. Comput. Syst. Sci. 79, 1230–1242 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Garca-Valls, M., Cucinotta, T., Lu, C.: Challenges in real-time virtualization and predictable cloud computing. J. Syst. Architect. 60(9), 726–740 (2014)Google Scholar
  11. 11.
    Gmach, D., Rolia, J., Cherkasova, L., Belrose, G., Turicchi, T., Kemper, A.: An integrated approach to resource pool management: policies, efficiency and quality metrics. In: IEEE International Conference on Dependable Systems and Networks, pp. 326–335 (2008)Google Scholar
  12. 12.
    Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1–2), 43–62 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Guazzone, M., Anglano, C., Canonico, M.: Exploiting VM migration for the automated power and performance management of green cloud computing systems. In: Huusko, J., de Meer, H., Klingert, S., Somov, A. (eds.) 1st International Workshop on Energy Efficient Data Centers, vol. 7396, pp. 81–92. Springer, Heidelberg (2012)Google Scholar
  14. 14.
    Guenter, B., Jain, N., Williams, C.: Managing cost, performance, and reliability tradeoffs for energy-aware server provisioning. In: Proceedings of IEEE INFOCOM, pp. 1332–1340. IEEE (2011)Google Scholar
  15. 15.
    Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard computational problems. Science 275(5296), 51–54 (1997)CrossRefGoogle Scholar
  16. 16.
    Hyser, C., McKee, B., Gardner, R., Watson, B.J.: Autonomic virtual machine placement in the data center. Technical report HP Laboratories (2008)Google Scholar
  17. 17.
    Jung, G., Hiltunen, M.A., Joshi, K.R., Schlichting, R.D., Pu, C.: Mistral: dynamically managing power, performance, and adaptation cost in cloud infrastructures. In: IEEE 30th International Conference on Distributed Computing Systems, pp. 62–73 (2010)Google Scholar
  18. 18.
    Li, H., Zhu, G., Cui, C., Tang, H., Dou, Y., He, C.: Energy-efficient migration and consolidation algorithm of virtual machines in data centers for cloud computing. Computing 98(3), 303–317 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Li, R., Zheng, Q., Li, X., Wu, J.: A novel multi-objective optimization scheme for rebalancing virtual machine placement. In: IEEE 9th International Conference on Cloud Computing, pp. 710–717 (2016)Google Scholar
  20. 20.
    Li, W., Tordsson, J., Elmroth, E.: Virtual machine placement for predictable and time-constrained peak loads. In: Vanmechelen, K., Altmann, J., Rana, O.F. (eds.) GECON 2011. LNCS, vol. 7150, pp. 120–134. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28675-9_9 CrossRefGoogle Scholar
  21. 21.
    Li, Z., Yan, C., Yu, X., Yu, N.: Bayesian network-based virtual machines consolidation method. Future Gener. Comput. Syst. 69, 75–87 (2017)CrossRefGoogle Scholar
  22. 22.
    Mann, Z.A.: Allocation of virtual machines in cloud data centers - a survey of problem models and optimization algorithms. ACM Comput. Surv. 48(1) (2015). Article nr. 11Google Scholar
  23. 23.
    Mann, Z.A.: Approximability of virtual machine allocation: much harder than bin packing. In: Proceedings of the 9th Hungarian-Japanese Symposium on Discrete Mathematics and Its Applications, pp. 21–30 (2015)Google Scholar
  24. 24.
    Mann, Z.A.: Modeling the virtual machine allocation problem. In: Proceedings of the International Conference on Mathematical Methods, Mathematical Models and Simulation in Science and Engineering, pp. 102–106 (2015)Google Scholar
  25. 25.
    Mann, Z.A.: Multicore-aware virtual machine placement in cloud data centers. IEEE Trans. Comput. 65(11), 3357–3369 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Mann, Z.Á, Szabó, M.: Which is the best algorithm for virtual machine placement optimization? Concurrency Comput. Pract. Exp. 29(10), e4083 (2017)Google Scholar
  27. 27.
    Marotta, A., Avallone, S.: A simulated annealing based approach for power efficient virtual machines consolidation. In: Proceedings of the 8th IEEE International Conference on Cloud Computing, pp. 445–452 (2015)Google Scholar
  28. 28.
    Mishra, M., Sahoo, A.: On theory of VM placement: anomalies in existing methodologies and their mitigation using a novel vector based approach. In: IEEE International Conference on Cloud Computing, pp. 275–282 (2011)Google Scholar
  29. 29.
    Qu, C., Calheiros, R.N., Buyya, R.: Mitigating impact of short-term overload on multi-cloud web applications through geographical load balancing. Concurrency Comput. Pract. Exp. 29(12), e4126 (2017)CrossRefGoogle Scholar
  30. 30.
    Rampersaud, S., Grosu, D.: Sharing-aware online algorithms for virtual machine packing in cloud environments. In: Proceedings of the 8th IEEE International Conference on Cloud Computing, pp. 718–725 (2015)Google Scholar
  31. 31.
    Ribas, B.C., Suguimoto, R.M., Montano, R., Silva, F., de Bona, L., Castilho, M.A.: On modelling virtual machine consolidation to pseudo-Boolean constraints. In: 13th Ibero-American Conference on AI, pp. 361–370 (2012)Google Scholar
  32. 32.
    Salehi, M.A., Krishna, P.R., Deepak, K.S., Buyya, R.: Preemption-aware energy management in virtualized data centers. In: 5th International Conference on Cloud Computing, pp. 844–851. IEEE (2012)Google Scholar
  33. 33.
    Shi, L., Furlong, J., Wang, R.: Empirical evaluation of vector bin packing algorithms for energy efficient data centers. In: IEEE Symposium on Computers and Communications, pp. 9–15 (2013)Google Scholar
  34. 34.
    Strunk, A.: Costs of virtual machine live migration: a survey. In: 8th IEEE World Congress on Services, pp. 323–329 (2012)Google Scholar
  35. 35.
    Svärd, P., Li, W., Wadbro, E., Tordsson, J., Elmroth, E.: Continuous datacenter consolidation. In: IEEE 7th International Conference on Cloud Computing Technology and Science (CloudCom), pp. 387–396 (2015)Google Scholar
  36. 36.
    Tomás, L., Tordsson, J.: An autonomic approach to risk-aware data center overbooking. IEEE Trans. Cloud Comput. 2(3), 292–305 (2014)CrossRefGoogle Scholar
  37. 37.
    Verma, A., Dasgupta, G., Nayak, T.K., De, P., Kothari, R.: Server workload analysis for power minimization using consolidation. In: Proceedings of the 2009 USENIX Annual Technical Conference, pp. 355–368 (2009)Google Scholar
  38. 38.
    Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Sandpiper: black-box and gray-box resource management for virtual machines. Comput. Netw. 53(17), 2923–2938 (2009)CrossRefzbMATHGoogle Scholar
  39. 39.
    Xiao, Z., Song, W., Chen, Q.: Dynamic resource allocation using virtual machines for cloud computing environment. IEEE Trans. Parallel Distrib. Syst. 24(6), 1107–1117 (2013)CrossRefGoogle Scholar
  40. 40.
    Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)zbMATHGoogle Scholar
  41. 41.
    Zhang, Z., Hsu, C.C., Chang, M.: CoolCloud: a practical dynamic virtual machine placement framework for energy aware data centers. In: Proceedings of the 8th IEEE International Conference on Cloud Computing, pp. 758–765 (2015)Google Scholar
  42. 42.
    Zheng, Q., Li, R., Li, X., Wu, J.: A multi-objective biogeography-based optimization for virtual machine placement. In: Proceedings of the 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 687–696 (2015)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.paluno – The Ruhr Institute for Software TechnologyUniversity of Duisburg-EssenEssenGermany

Personalised recommendations