Empowering Low-Latency Applications Through a Serverless Edge Computing Architecture

  • Luciano Baresi
  • Danilo Filgueira Mendonça
  • Martin GarrigaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10465)


The exponential increase of the data generated by pervasive and mobile devices requires disrupting approaches for the realization of emerging mobile and IoT applications. Although cloud computing provides virtually unlimited computational resources, low-latency applications cannot afford the high latencies introduced by sending and retrieving data from/to the cloud. In this scenario, edge computing appears as a promising solution by bringing computation and data near to users and devices. However, the resource-finite nature of edge servers constrains the possibility of deploying full applications on them. To cope with these problems, we propose a serverless architecture at the edge, bringing a highly scalable, intelligent and cost-effective use of edge infrastructure’s resources with minimal configuration and operation efforts. The feasibility of our approach is shown through an augmented reality use case for mobile devices, in which we offload computation and data intensive tasks from the devices to serverless functions at the edge, outperforming the cloud alternative up to 80% in terms of throughput and latency.


Serverless architectures Edge computing Mobile Edge Computing Low-latency applications 


  1. 1.
    Dehos, C., González, J.L., Domenico, A.D., Kténas, D., Dussopt, L.: Millimeter-wave access and backhauling: the solution to the exponential data traffic increase in 5G mobile communications systems? IEEE Commun. Mag. 52(9), 88–95 (2014)CrossRefGoogle Scholar
  2. 2.
    Tarneberg, W., Mehta, A., Wadbro, E., Tordsson, J., Eker, J., Kihl, M., Elmroth, E.: Dynamic application placement in the mobile cloud network. Future Gener. Comput. Syst. 70, 163–177 (2017)CrossRefGoogle Scholar
  3. 3.
    Beck, M.T., Werner, M., Feld, S., Schimper, S.: Mobile edge computing: a taxonomy. In: Proceedings of the Sixth International Conference on Advances in Future Internet, pp. 48–54 (2014)Google Scholar
  4. 4.
    Satria, D., Park, D., Jo, M.: Recovery for overloaded mobile edge computing. Future Gener. Comput. Syst. 70, 138–147 (2017)CrossRefGoogle Scholar
  5. 5.
    Pahl, C.: Containerization and the PaaS cloud. IEEE Cloud Comput. 2(3), 24–31 (2015)CrossRefGoogle Scholar
  6. 6.
    Roberts, M.: Serverless architectures: what is serverless? (2016).
  7. 7.
    Fromm, K.: Why the future of software and apps is serverless (2012).
  8. 8.
    Salman, O., Elhajj, I., Kayssi, A., Chehab, A.: Edge computing enabling the Internet of Things. In: IEEE World Forum on Internet of Things (WF-IoT), pp. 603–608, December 2015Google Scholar
  9. 9.
    Ahmed, A., Ahmed, E.: A survey on mobile edge computing. In: 2016 10th International Conference on Intelligent Systems and Control (ISCO), pp. 1–8, January 2016Google Scholar
  10. 10.
    Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V.: Mobile edge computing: a key technology towards 5G. ETSI White Paper 11 (2015)Google Scholar
  11. 11.
    Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Serverless computation with openlambda. In: Proceedings of the 8th USENIX Conference on Hot Topics in Cloud Computing, pp. 33–39 (2016)Google Scholar
  12. 12.
    Villamizar, M., Garcés, O., Ochoa, L., Castro, H., Salamanca, L., Verano, M., Casallas, R., Gil, S., Valencia, C., Zambrano, A., Lang, M.: Cost comparison of running web applications in the cloud using monolithic, microservice, and AWS lambda architectures. Serv. Oriented Comput. Appl. 11(2), 233–247 (2017)CrossRefGoogle Scholar
  13. 13.
    Barfield, W.: Fundamentals of Wearable Computers and Augmented Reality. CRC Press, Boca Raton (2015)Google Scholar
  14. 14.
    Huang, B.R., Lin, C.H., Lee, C.H.: Mobile augmented reality based on cloud computing. In: Anti-counterfeiting, Security, and Identification, pp. 1–5, August 2012Google Scholar
  15. 15.
    Wagner, D., Schmalstieg, D., Bischof, H.: Multiple target detection and tracking with guaranteed framerates on mobile phones. In: IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 57–64 (2009)Google Scholar
  16. 16.
    Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743–761 (2012)CrossRefGoogle Scholar
  17. 17.
    Baresi, L., Guinea, S., Mendonca, D.F.: A3droid: a framework for developing distributed crowdsensing. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6, March 2016Google Scholar
  18. 18.
    Sill, A.: Standards at the edge of the cloud. IEEE Cloud Comput. 4(2), 63–67 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Abase, A.H., Khafagy, M.H., Omara, F.A.: Locality sim: cloud simulator with data locality. Int. J. Cloud Comput. Serv. Archit. (IJCCSA) 6, 17–31 (2016)Google Scholar
  20. 20.
    Rodriguez-Santana, B.G., Viveros, A.M., Carvajal-Gámez, B.E., Trejo-Osorio, D.C.: Mobile computation offloading architecture for mobile augmented reality, case study: visualization of cetacean skeleton. Int. J. Adv. Comput. Sci. Appl. 1(7), 665–671 (2016)Google Scholar
  21. 21.
    Nokia Siemens Networks, Intel: Increasing mobile operators’ value proposition with edge computing (2013).
  22. 22.
    Ismail, B.I., Goortani, E.M., Karim, M.B.A., Tat, W.M., Setapa, S., Luke, J.Y., Hoe, O.H.: Evaluation of docker as edge computing platform. In: 2015 IEEE Conference on Open Systems (ICOS), pp. 130–135, August 2015Google Scholar
  23. 23.
    de Lara, E., Gomes, C.S., Langridge, S., Mortazavi, S.H., Roodi, M.: Hierarchical serverless computing for the mobile edge. In: IEEE/ACM Symposium on Edge Computing (SEC), pp. 109–110. IEEE (2016)Google Scholar
  24. 24.
    Baresi, L., Guinea, S., Leva, A., Quattrocchi, G.: A discrete-time feedback controller for containerized cloud applications. In: Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp. 217–228 (2016)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Luciano Baresi
    • 1
  • Danilo Filgueira Mendonça
    • 1
  • Martin Garriga
    • 1
    Email author
  1. 1.Dipartimento di Elettronica, Informazione e BioingegneriaPolitecnico di MilanoMilanItaly

Personalised recommendations