Retinal Prostheses: Other Therapies and Future Directions

  • Olivier Goureau
  • Christelle Monville
  • Antoine Chaffiol
  • Gregory Gauvain
  • Serge Picaud
  • Jens Duebel
  • José-Alain Sahel
Chapter
Part of the Essentials in Ophthalmology book series (ESSENTIALS)

Abstract

Inherited and age-related retinal dystrophies, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD), respectively, are a leading cause of irreversible vision loss. Various approaches aiming at restoring visual function in the blind are currently under development and evaluation: neuroprotection, gene and cell therapy, and retinal prostheses. In this review, we focus on recent advances in optogenetics and cell therapy, two therapeutic strategies that have the potential to restore vision in a broad spectrum of retinal degenerative diseases. We discuss major advantages of optogenetics and cell therapies as well as their current limitations.

Keywords

Cell therapies Optogenetics Photoreceptors Regenerative medicine Retinal pigmented epithelium Retinal dystrophies Vision loss Vision restoration 

References

  1. Ahmad ZM, Hughes BA, Abrams GW, et al. Combined posterior chamber intraocular lens, vitrectomy, Retisert, and pars plana tube in noninfectious uveitis. Arch Ophthalmol. 2012;130:908–13.PubMedCrossRefGoogle Scholar
  2. Andrews PW, Baker D, Benvinisty N, et al. Points to consider in the development of seed stocks of pluripotent stem cells for clinical applications: international stem cell banking initiative (ISCBI). Regen Med. 2015;10:1–44.PubMedCrossRefGoogle Scholar
  3. Assawachananont J, Mandai M, Okamoto S, et al. Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Rep. 2014;2:662–74.CrossRefGoogle Scholar
  4. Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358:2231–9.PubMedCrossRefGoogle Scholar
  5. Banin E, Obolensky A, Idelson M, et al. Retinal incorporation and differentiation of neural precursors derived from human embryonic stem cells. Stem Cells. 2006;24:246–57.PubMedCrossRefGoogle Scholar
  6. Bennett J, Ashtari M, Wellman J, et al. AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med. 2012;4:120ra15.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bi A, Cui J, Ma YP, et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron. 2006;50:23–33.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Booij JC, Baas DC, Beisekeeva J, et al. The dynamic nature of Bruch’s membrane. Prog Retin Eye Res. 2010;29:1–18.PubMedCrossRefGoogle Scholar
  9. Borooah S, Phillips MJ, Bilican B, et al. Using human induced pluripotent stem cells to treat retinal disease. Prog Retin Eye Res. 2013;37:163–81.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Boyden ES, Zhang F, Bamberg E, et al. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005;8:1263–8.PubMedCrossRefGoogle Scholar
  11. Buchholz DEH, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV, Clegg DO. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells. 2009;10:2427–34.CrossRefGoogle Scholar
  12. Busskamp V, Duebel J, Balya D, et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science. 2010;329:413–7.PubMedCrossRefGoogle Scholar
  13. Carr AJ, Vugler AA, Hikita ST, et al. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One. 2009;4:e8152.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cehajic-Kapetanovic J, Eleftheriou C, Allen AE, et al. Restoration of vision with ectopic expression of human rod opsin. Curr Biol. 2015;25:2111–22.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chow BY, Han X, Dobry AS, et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature. 2010;463:98–102.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cideciyan AV, Hauswirth WW, Aleman TS, et al. Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum Gene Ther. 2009;20:999–1004.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cosentino C, Alberio L, Gazzarrini S, et al. Optogenetics. Engineering of a light-gated potassium channel. Science. 2015;348:707–10.PubMedCrossRefGoogle Scholar
  18. Cronin T, Vandenberghe LH, Hantz P, et al. Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol Med. 2014;6:1175–90.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Dalkara D, Byrne LC, Klimczak RR, et al. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med. 2013;5:189ra76.PubMedCrossRefGoogle Scholar
  20. Dalkara D, Goureau O, Marazova K, et al. Let there be light: gene and cell therapy for blindness. Hum Gene Ther. 2016;27:134–47.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Decembrini S, Koch U, Radtke F, et al. Derivation of traceable and transplantable photoreceptors from mouse embryonic stem cells. Stem Cell Rep. 2014;2:853–65.CrossRefGoogle Scholar
  22. Diniz KT, Cabral-Filho JE, Miranda RM, et al. Effect of the kangaroo position on the electromyographic activity of preterm children: a follow-up study. BMC Pediatr. 2013;13:79.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Doroudchi MM, Greenberg KP, Liu J, et al. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther. 2011;19:1220–9.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011;472:51–6.PubMedCrossRefGoogle Scholar
  25. Forrester JV. Privilege revisited: an evaluation of the eye's defence mechanisms. Eye (Lond). 2009;23:756–66.CrossRefGoogle Scholar
  26. Fradot M, Busskamp V, Forster V, et al. Gene therapy in ophthalmology: validation on cultured retinal cells and explants from postmortem human eyes. Hum Gene Ther. 2011;22:587–93.PubMedCrossRefGoogle Scholar
  27. Garber K. RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nat Biotechnol. 2015;33:890–1.PubMedCrossRefGoogle Scholar
  28. Garita-Hernandez M, Diaz-Corrales F, Lukovic D, et al. Hypoxia increases the yield of photoreceptors differentiating from mouse embryonic stem cells and improves the modeling of retinogenesis in vitro. Stem Cells. 2013;31:966–78.PubMedCrossRefGoogle Scholar
  29. Gaub BM, Berry MH, Holt AE, et al. Optogenetic vision restoration using rhodopsin for enhanced sensitivity. Mol Ther. 2015;23:1562–71.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gonzalez-Cordero A, West EL, Pearson RA, et al. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nat Biotechnol. 2013;31:741–7.PubMedCrossRefGoogle Scholar
  31. Gouras P, Flood MT, Kjeldbye H. Transplantation of cultured human retinal cells to monkey retina. An Acad Bras Cienc. 1984;56:431–43.PubMedGoogle Scholar
  32. Gouras P, Flood MT, Kjedbye H, et al. Transplantation of cultured human retinal epithelium to Bruch’s membrane of the owl monkey’s eye. Curr Eye Res. 1985;4:253–65.PubMedCrossRefGoogle Scholar
  33. Gourraud PA, Gilson L, Girard M, et al. The role of human leukocyte antigen matching in the development of multiethnic “haplobank” of induced pluripotent stem cell lines. Stem Cells. 2012;30:180–6.PubMedCrossRefGoogle Scholar
  34. Greenberg KP, Pham A, Werblin FS. Differential targeting of optical neuromodulators to ganglion cell soma and dendrites allows dynamic control of center-surround antagonism. Neuron. 2011;69:713–20.PubMedCrossRefGoogle Scholar
  35. Ham WT Jr, Ruffolo JJ Jr, Mueller HA, et al. Histologic analysis of photochemical lesions produced in rhesus retina by short-wave-length light. Invest Ophthalmol Vis Sci. 1978;17:1029–35.PubMedGoogle Scholar
  36. Hausser M. Optogenetics: the age of light. Nat Methods. 2014;11:1012–4.PubMedCrossRefGoogle Scholar
  37. He H, Tan Y, Duffort S, et al. In vivo downregulation of innate and adaptive immune responses in corneal allograft rejection by HC-HA/PTX3 complex purified from amniotic membrane. Invest Ophthalmol Vis Sci. 2014;55:1647–56.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hu Y, Liu L, Lu B, et al. A novel approach for subretinal implantation of ultrathin substrates containing stem cell-derived retinal pigment epithelium monolayer. Ophthalmic Res. 2012;48:186–91.PubMedCrossRefGoogle Scholar
  39. Ivanova E, Pan ZH. Evaluation of the adeno-associated virus mediated long-term expression of channelrhodopsin-2 in the mouse retina. Mol Vis. 2009;15:1680–9.PubMedPubMedCentralGoogle Scholar
  40. Ivanova E, Hwang GS, Pan ZH, et al. Evaluation of AAV-mediated expression of Chop2-GFP in the marmoset retina. Invest Ophthalmol Vis Sci. 2010;51:5288–96.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Jacobson SG, Cideciyan AV. Treatment possibilities for retinitis pigmentosa. N Engl J Med. 2010;363:1669–71.PubMedCrossRefGoogle Scholar
  42. Jha BS, Bharti K. Regenerating retinal pigment epithelial cells to cure blindness: a road towards personalized artificial tissue. Curr Stem Cell Rep. 2015;1:79–91.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Jones BW, Pfeiffer RL, Ferrell WD, et al. Retinal remodeling in human retinitis pigmentosa. Exp Eye Res. 2016;150:149–65.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kador KE, Goldberg JL. Scaffolds and stem cells: delivery of cell transplants for retinal degenerations. Expert Rev Ophthalmol. 2012;7:459–70.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kamao H, Mandai M, Okamoto S, et al. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep. 2014;2:205–18.CrossRefGoogle Scholar
  46. Klapoetke NC, Murata Y, Kim SS, et al. Independent optical excitation of distinct neural populations. Nat Methods. 2014;11:338–46.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Klassen H. Stem cells in clinical trials for treatment of retinal degeneration. Expert Opin Biol Ther. 2016;16:7–14.PubMedCrossRefGoogle Scholar
  48. Kleinlogel S, Feldbauer K, Dempski RE, et al. Ultra light-sensitive and fast neuronal activation with the Ca(2)+-permeable channelrhodopsin CatCh. Nat Neurosci. 2011;14:513–8.PubMedCrossRefGoogle Scholar
  49. Krishnamoorthy V, Cherukuri P, Poria D, et al. Retinal remodeling: concerns, emerging remedies and future prospects. Front Cell Neurosci. 2016;10:38.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kuwahara A, Ozone C, Nakano T, et al. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat Commun. 2015;6:6286.PubMedCrossRefGoogle Scholar
  51. Lagali PS, Balya D, Awatramani GB, et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci. 2008;11:667–75.PubMedCrossRefGoogle Scholar
  52. Lamba DA, Gust J, Reh TA. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell. 2009;4:73–9.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lamba DA, McUsic A, Hirata RK, et al. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One. 2010;5:e8763.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Leach LL, Clegg DO. Concise review: making stem cells retinal: methods for deriving retinal pigment epithelium and implications for patients with ocular disease. Stem Cells. 2015;33:2363–73.PubMedCrossRefGoogle Scholar
  55. Lin B, Koizumi A, Tanaka N, et al. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci U S A. 2008;105:16009–14.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lin JY, Knutsen PM, Muller A, et al. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci. 2013;16:1499–508.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Liu Z, Yu N, Holz FG, et al. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials. 2014;35:2837–50.PubMedCrossRefGoogle Scholar
  58. Lopez R, Gouras P, Kjeldbye H, et al. Transplanted retinal pigment epithelium modifies the retinal degeneration in the RCS rat. Invest Ophthalmol Vis Sci. 1989;30:586–8.PubMedGoogle Scholar
  59. Lu B, Morgans CW, Girman S, et al. Neural stem cells derived by small molecules preserve vision. Transl Vis Sci Technol. 2013;2:1.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lu B, Tai YC, Humayun MS. Microdevice-based cell therapy for age-related macular degeneration. Dev Ophthalmol. 2014;53:155–66.PubMedCrossRefGoogle Scholar
  61. Mace E, Caplette R, Marre O, et al. Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice. Mol Ther. 2015;23:7–16.PubMedCrossRefGoogle Scholar
  62. MacLaren RE, Groppe M, Barnard AR, et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet. 2014;383:1129–37.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Maguire AM, Simonelli F, Pierce EA, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358:2240–8.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Marc R, Pfeiffer R, Jones B. Retinal prosthetics, optogenetics, and chemical photoswitches. ACS Chem Neurosci. 2014;5:895–901.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Maruotti J, Sripathi SR, Bharti K, et al. Small-molecule-directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells. Proc Natl Acad Sci U S A. 2015;112:10950–5.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Matsuno-Yagi A, Mukohata Y. Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun. 1977;78:237–43.PubMedCrossRefGoogle Scholar
  67. Meyer JS, Howden SE, Wallace KA, et al. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells. 2011;29:1206–18.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Nagel G, Ollig D, Fuhrmann M, et al. Channelrhodopsin-1: a light-gated proton channel in green algae. Science. 2002;296:2395–8.PubMedCrossRefGoogle Scholar
  69. Nagel G, Szellas T, Huhn W, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A. 2003;100:13940–5.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012;10:771–85.PubMedCrossRefGoogle Scholar
  71. Nazari H, Zhang L, Zhu D, et al. Stem cell based therapies for age-related macular degeneration: the promises and the challenges. Prog Retin Eye Res. 2015;48:1–39.PubMedCrossRefGoogle Scholar
  72. Niknejad H, Peirovi H, Jorjani M, et al. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater. 2008;15:88–99.PubMedCrossRefGoogle Scholar
  73. Oesterhelt D, Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol. 1971;233:149–52.PubMedCrossRefGoogle Scholar
  74. Organisciak DT, Vaughan DK. Retinal light damage: mechanisms and protection. Prog Retin Eye Res. 2010;29:113–34.PubMedCrossRefGoogle Scholar
  75. Pan ZH, Ganjawala TH, Lu Q, et al. ChR2 mutants at L132 and T159 with improved operational light sensitivity for vision restoration. PLoS One. 2014;9:e98924.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Phillips MJ, Wallace KA, Dickerson SJ, et al. Blood-derived human iPS cells generate optic vesicle-like structures with the capacity to form retinal laminae and develop synapses. Invest Ophthalmol Vis Sci. 2012;53:2007–19.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Polosukhina A, Litt J, Tochitsky I, et al. Photochemical restoration of visual responses in blind mice. Neuron. 2012;75:271–82.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Ramsden CM, Powner MB, Carr AJ, et al. Stem cells in retinal regeneration: past, present and future. Development. 2013;140:2576–85.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Reh TA, Lamba D, Gust J. Directing human embryonic stem cells to a retinal fate. Methods Mol Biol. 2010;636:139–53.PubMedCrossRefGoogle Scholar
  80. Reichman S, Terray A, Slembrouck A, et al. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc Natl Acad Sci U S A. 2014;111(23):8518.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Rozanowska M, Jarvis-Evans J, Korytowski W, et al. Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. J Biol Chem. 1995;270:18825–30.PubMedCrossRefGoogle Scholar
  82. Salero E, Blenkinsop TA, Corneo B, et al. Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives. Cell Stem Cell. 2012;10:88–95.PubMedCrossRefGoogle Scholar
  83. Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379:713–20.PubMedCrossRefGoogle Scholar
  84. Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385:509–16.PubMedCrossRefGoogle Scholar
  85. Shirai H, Mandai M, Matsushita K, et al. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proc Natl Acad Sci U S A. 2016;113:E81–90.PubMedCrossRefGoogle Scholar
  86. Simonelli F, Maguire AM, Testa F, et al. Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther. 2010;18:643–50.PubMedCrossRefGoogle Scholar
  87. Song MJ, Bharti K. Looking into the future: using induced pluripotent stem cells to build two and three dimensional ocular tissue for cell therapy and disease modeling. Brain Res. 2016;1638:2–14.PubMedCrossRefGoogle Scholar
  88. Song WK, Park KM, Kim HJ, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Rep. 2015;4:860–72.CrossRefGoogle Scholar
  89. Stanzel BV, Liu Z, Somboonthanakij S, et al. Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space. Stem Cell Rep. 2014;2:64–77.CrossRefGoogle Scholar
  90. Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85:845–81.PubMedCrossRefGoogle Scholar
  91. Streilein JW, Ma N, Wenkel H, et al. Immunobiology and privilege of neuronal retina and pigment epithelium transplants. Vis Res. 2002;42:487–95.PubMedCrossRefGoogle Scholar
  92. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.PubMedCrossRefGoogle Scholar
  93. Taylor CJ, Bolton EM, Pocock S, et al. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet. 2005;366:2019–25.PubMedCrossRefGoogle Scholar
  94. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.PubMedCrossRefGoogle Scholar
  95. Tochitsky I, Polosukhina A, Degtyar VE, et al. Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells. Neuron. 2014;81:800–13.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Tomita H, Sugano E, Yawo H, et al. Restoration of visual response in aged dystrophic RCS rats using AAV-mediated channelopsin-2 gene transfer. Invest Ophthalmol Vis Sci. 2007;48:3821–6.PubMedCrossRefGoogle Scholar
  97. Tomita H, Sugano E, Fukazawa Y, et al. Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the thy-1.2 promoter. PLoS One. 2009;4:e7679.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Tomita H, Sugano E, Isago H, et al. Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exp Eye Res. 2010;90:429–36.PubMedCrossRefGoogle Scholar
  99. Tomkins-Netzer O, Taylor SR, Bar A, et al. Treatment with repeat dexamethasone implants results in long-term disease control in eyes with noninfectious uveitis. Ophthalmology. 2014;121:1649–54.PubMedCrossRefGoogle Scholar
  100. Tsai Y, Lu B, Bakondi B, et al. Human iPSC-derived neural progenitors preserve vision in an AMD-like model. Stem Cells. 2015;33:2537–49.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Tucker BA, Park IH, Qi SD, et al. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS One. 2011;6:e18992.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Wang S, Lu B, Wood P, et al. Grafting of ARPE-19 and Schwann cells to the subretinal space in RCS rats. Invest Ophthalmol Vis Sci. 2005;46:2552–60.PubMedCrossRefGoogle Scholar
  103. Wang S, Girman S, Lu B, et al. Long-term vision rescue by human neural progenitors in a rat model of photoreceptor degeneration. Invest Ophthalmol Vis Sci. 2008;49:3201–6.PubMedPubMedCentralCrossRefGoogle Scholar
  104. West EL, Gonzalez-Cordero A, Hippert C, et al. Defining the integration capacity of embryonic stem cell-derived photoreceptor precursors. Stem Cells. 2012;30:1424–35.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Wiley LA, Burnight ER, Songstad AE, et al. Patient-specific induced pluripotent stem cells (iPSCs) for the study and treatment of retinal degenerative diseases. Prog Retin Eye Res. 2015;44:15–35.PubMedCrossRefGoogle Scholar
  106. Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2:e106–16.PubMedCrossRefGoogle Scholar
  107. Wu J, Seregard S, Algvere PV. Photochemical damage of the retina. Surv Ophthalmol. 2006;51:461–81.PubMedCrossRefGoogle Scholar
  108. van Wyk M, Pielecka-Fortuna J, Lowel S, et al. Restoring the ON switch in blind retinas: opto-mGluR6, a next-generation, cell-tailored optogenetic tool. PLoS Biol. 2015;13:e1002143.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Zhang Y, Ivanova E, Bi A, et al. Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration. J Neurosci. 2009;29:9186–96.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Zhong X, Gutierrez C, Xue T, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun. 2014;5:4047.PubMedPubMedCentralGoogle Scholar
  111. Zhou L, Wang W, Liu Y, et al. Differentiation of induced pluripotent stem cells of swine into rod photoreceptors and their integration into the retina. Stem Cells. 2011;29:972–80.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Olivier Goureau
    • 1
  • Christelle Monville
    • 2
  • Antoine Chaffiol
    • 1
  • Gregory Gauvain
    • 1
  • Serge Picaud
    • 1
  • Jens Duebel
    • 1
  • José-Alain Sahel
    • 1
    • 3
    • 4
    • 5
  1. 1.Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 6, INSERM UMRS_968, CNRS UMR 7210ParisFrance
  2. 2.Université Evry Val Essonne, ISTEMParisFrance
  3. 3.Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CICParisFrance
  4. 4.Fondation Ophtalmologique Adolphe de RothschildParisFrance
  5. 5.Department of OphthalmologyThe University of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations