Skip to main content

Retinal Prostheses: Other Therapies and Future Directions

  • Chapter
  • First Online:
Retinal Prosthesis

Abstract

Inherited and age-related retinal dystrophies, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD), respectively, are a leading cause of irreversible vision loss. Various approaches aiming at restoring visual function in the blind are currently under development and evaluation: neuroprotection, gene and cell therapy, and retinal prostheses. In this review, we focus on recent advances in optogenetics and cell therapy, two therapeutic strategies that have the potential to restore vision in a broad spectrum of retinal degenerative diseases. We discuss major advantages of optogenetics and cell therapies as well as their current limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmad ZM, Hughes BA, Abrams GW, et al. Combined posterior chamber intraocular lens, vitrectomy, Retisert, and pars plana tube in noninfectious uveitis. Arch Ophthalmol. 2012;130:908–13.

    Article  PubMed  Google Scholar 

  • Andrews PW, Baker D, Benvinisty N, et al. Points to consider in the development of seed stocks of pluripotent stem cells for clinical applications: international stem cell banking initiative (ISCBI). Regen Med. 2015;10:1–44.

    Article  CAS  PubMed  Google Scholar 

  • Assawachananont J, Mandai M, Okamoto S, et al. Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Rep. 2014;2:662–74.

    Article  Google Scholar 

  • Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358:2231–9.

    Article  CAS  PubMed  Google Scholar 

  • Banin E, Obolensky A, Idelson M, et al. Retinal incorporation and differentiation of neural precursors derived from human embryonic stem cells. Stem Cells. 2006;24:246–57.

    Article  PubMed  Google Scholar 

  • Bennett J, Ashtari M, Wellman J, et al. AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med. 2012;4:120ra15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bi A, Cui J, Ma YP, et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron. 2006;50:23–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booij JC, Baas DC, Beisekeeva J, et al. The dynamic nature of Bruch’s membrane. Prog Retin Eye Res. 2010;29:1–18.

    Article  CAS  PubMed  Google Scholar 

  • Borooah S, Phillips MJ, Bilican B, et al. Using human induced pluripotent stem cells to treat retinal disease. Prog Retin Eye Res. 2013;37:163–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E, et al. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005;8:1263–8.

    Article  CAS  PubMed  Google Scholar 

  • Buchholz DEH, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV, Clegg DO. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells. 2009;10:2427–34.

    Article  CAS  Google Scholar 

  • Busskamp V, Duebel J, Balya D, et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science. 2010;329:413–7.

    Article  CAS  PubMed  Google Scholar 

  • Carr AJ, Vugler AA, Hikita ST, et al. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One. 2009;4:e8152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cehajic-Kapetanovic J, Eleftheriou C, Allen AE, et al. Restoration of vision with ectopic expression of human rod opsin. Curr Biol. 2015;25:2111–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow BY, Han X, Dobry AS, et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature. 2010;463:98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cideciyan AV, Hauswirth WW, Aleman TS, et al. Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum Gene Ther. 2009;20:999–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosentino C, Alberio L, Gazzarrini S, et al. Optogenetics. Engineering of a light-gated potassium channel. Science. 2015;348:707–10.

    Article  CAS  PubMed  Google Scholar 

  • Cronin T, Vandenberghe LH, Hantz P, et al. Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol Med. 2014;6:1175–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalkara D, Byrne LC, Klimczak RR, et al. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med. 2013;5:189ra76.

    Article  PubMed  CAS  Google Scholar 

  • Dalkara D, Goureau O, Marazova K, et al. Let there be light: gene and cell therapy for blindness. Hum Gene Ther. 2016;27:134–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decembrini S, Koch U, Radtke F, et al. Derivation of traceable and transplantable photoreceptors from mouse embryonic stem cells. Stem Cell Rep. 2014;2:853–65.

    Article  CAS  Google Scholar 

  • Diniz KT, Cabral-Filho JE, Miranda RM, et al. Effect of the kangaroo position on the electromyographic activity of preterm children: a follow-up study. BMC Pediatr. 2013;13:79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Doroudchi MM, Greenberg KP, Liu J, et al. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther. 2011;19:1220–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011;472:51–6.

    Article  CAS  PubMed  Google Scholar 

  • Forrester JV. Privilege revisited: an evaluation of the eye's defence mechanisms. Eye (Lond). 2009;23:756–66.

    Article  CAS  Google Scholar 

  • Fradot M, Busskamp V, Forster V, et al. Gene therapy in ophthalmology: validation on cultured retinal cells and explants from postmortem human eyes. Hum Gene Ther. 2011;22:587–93.

    Article  CAS  PubMed  Google Scholar 

  • Garber K. RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nat Biotechnol. 2015;33:890–1.

    Article  CAS  PubMed  Google Scholar 

  • Garita-Hernandez M, Diaz-Corrales F, Lukovic D, et al. Hypoxia increases the yield of photoreceptors differentiating from mouse embryonic stem cells and improves the modeling of retinogenesis in vitro. Stem Cells. 2013;31:966–78.

    Article  CAS  PubMed  Google Scholar 

  • Gaub BM, Berry MH, Holt AE, et al. Optogenetic vision restoration using rhodopsin for enhanced sensitivity. Mol Ther. 2015;23:1562–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Cordero A, West EL, Pearson RA, et al. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nat Biotechnol. 2013;31:741–7.

    Article  CAS  PubMed  Google Scholar 

  • Gouras P, Flood MT, Kjeldbye H. Transplantation of cultured human retinal cells to monkey retina. An Acad Bras Cienc. 1984;56:431–43.

    CAS  PubMed  Google Scholar 

  • Gouras P, Flood MT, Kjedbye H, et al. Transplantation of cultured human retinal epithelium to Bruch’s membrane of the owl monkey’s eye. Curr Eye Res. 1985;4:253–65.

    Article  CAS  PubMed  Google Scholar 

  • Gourraud PA, Gilson L, Girard M, et al. The role of human leukocyte antigen matching in the development of multiethnic “haplobank” of induced pluripotent stem cell lines. Stem Cells. 2012;30:180–6.

    Article  CAS  PubMed  Google Scholar 

  • Greenberg KP, Pham A, Werblin FS. Differential targeting of optical neuromodulators to ganglion cell soma and dendrites allows dynamic control of center-surround antagonism. Neuron. 2011;69:713–20.

    Article  CAS  PubMed  Google Scholar 

  • Ham WT Jr, Ruffolo JJ Jr, Mueller HA, et al. Histologic analysis of photochemical lesions produced in rhesus retina by short-wave-length light. Invest Ophthalmol Vis Sci. 1978;17:1029–35.

    PubMed  Google Scholar 

  • Hausser M. Optogenetics: the age of light. Nat Methods. 2014;11:1012–4.

    Article  CAS  PubMed  Google Scholar 

  • He H, Tan Y, Duffort S, et al. In vivo downregulation of innate and adaptive immune responses in corneal allograft rejection by HC-HA/PTX3 complex purified from amniotic membrane. Invest Ophthalmol Vis Sci. 2014;55:1647–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Liu L, Lu B, et al. A novel approach for subretinal implantation of ultrathin substrates containing stem cell-derived retinal pigment epithelium monolayer. Ophthalmic Res. 2012;48:186–91.

    Article  PubMed  Google Scholar 

  • Ivanova E, Pan ZH. Evaluation of the adeno-associated virus mediated long-term expression of channelrhodopsin-2 in the mouse retina. Mol Vis. 2009;15:1680–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanova E, Hwang GS, Pan ZH, et al. Evaluation of AAV-mediated expression of Chop2-GFP in the marmoset retina. Invest Ophthalmol Vis Sci. 2010;51:5288–96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobson SG, Cideciyan AV. Treatment possibilities for retinitis pigmentosa. N Engl J Med. 2010;363:1669–71.

    Article  CAS  PubMed  Google Scholar 

  • Jha BS, Bharti K. Regenerating retinal pigment epithelial cells to cure blindness: a road towards personalized artificial tissue. Curr Stem Cell Rep. 2015;1:79–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones BW, Pfeiffer RL, Ferrell WD, et al. Retinal remodeling in human retinitis pigmentosa. Exp Eye Res. 2016;150:149–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kador KE, Goldberg JL. Scaffolds and stem cells: delivery of cell transplants for retinal degenerations. Expert Rev Ophthalmol. 2012;7:459–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamao H, Mandai M, Okamoto S, et al. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep. 2014;2:205–18.

    Article  CAS  Google Scholar 

  • Klapoetke NC, Murata Y, Kim SS, et al. Independent optical excitation of distinct neural populations. Nat Methods. 2014;11:338–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klassen H. Stem cells in clinical trials for treatment of retinal degeneration. Expert Opin Biol Ther. 2016;16:7–14.

    Article  CAS  PubMed  Google Scholar 

  • Kleinlogel S, Feldbauer K, Dempski RE, et al. Ultra light-sensitive and fast neuronal activation with the Ca(2)+-permeable channelrhodopsin CatCh. Nat Neurosci. 2011;14:513–8.

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy V, Cherukuri P, Poria D, et al. Retinal remodeling: concerns, emerging remedies and future prospects. Front Cell Neurosci. 2016;10:38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuwahara A, Ozone C, Nakano T, et al. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat Commun. 2015;6:6286.

    Article  CAS  PubMed  Google Scholar 

  • Lagali PS, Balya D, Awatramani GB, et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci. 2008;11:667–75.

    Article  CAS  PubMed  Google Scholar 

  • Lamba DA, Gust J, Reh TA. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell. 2009;4:73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamba DA, McUsic A, Hirata RK, et al. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One. 2010;5:e8763.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leach LL, Clegg DO. Concise review: making stem cells retinal: methods for deriving retinal pigment epithelium and implications for patients with ocular disease. Stem Cells. 2015;33:2363–73.

    Article  PubMed  Google Scholar 

  • Lin B, Koizumi A, Tanaka N, et al. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci U S A. 2008;105:16009–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin JY, Knutsen PM, Muller A, et al. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci. 2013;16:1499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Yu N, Holz FG, et al. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials. 2014;35:2837–50.

    Article  CAS  PubMed  Google Scholar 

  • Lopez R, Gouras P, Kjeldbye H, et al. Transplanted retinal pigment epithelium modifies the retinal degeneration in the RCS rat. Invest Ophthalmol Vis Sci. 1989;30:586–8.

    CAS  PubMed  Google Scholar 

  • Lu B, Morgans CW, Girman S, et al. Neural stem cells derived by small molecules preserve vision. Transl Vis Sci Technol. 2013;2:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu B, Tai YC, Humayun MS. Microdevice-based cell therapy for age-related macular degeneration. Dev Ophthalmol. 2014;53:155–66.

    Article  PubMed  Google Scholar 

  • Mace E, Caplette R, Marre O, et al. Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice. Mol Ther. 2015;23:7–16.

    Article  CAS  PubMed  Google Scholar 

  • MacLaren RE, Groppe M, Barnard AR, et al. Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet. 2014;383:1129–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maguire AM, Simonelli F, Pierce EA, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358:2240–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marc R, Pfeiffer R, Jones B. Retinal prosthetics, optogenetics, and chemical photoswitches. ACS Chem Neurosci. 2014;5:895–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruotti J, Sripathi SR, Bharti K, et al. Small-molecule-directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells. Proc Natl Acad Sci U S A. 2015;112:10950–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuno-Yagi A, Mukohata Y. Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun. 1977;78:237–43.

    Article  CAS  PubMed  Google Scholar 

  • Meyer JS, Howden SE, Wallace KA, et al. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells. 2011;29:1206–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagel G, Ollig D, Fuhrmann M, et al. Channelrhodopsin-1: a light-gated proton channel in green algae. Science. 2002;296:2395–8.

    Article  CAS  PubMed  Google Scholar 

  • Nagel G, Szellas T, Huhn W, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A. 2003;100:13940–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 2012;10:771–85.

    Article  CAS  PubMed  Google Scholar 

  • Nazari H, Zhang L, Zhu D, et al. Stem cell based therapies for age-related macular degeneration: the promises and the challenges. Prog Retin Eye Res. 2015;48:1–39.

    Article  CAS  PubMed  Google Scholar 

  • Niknejad H, Peirovi H, Jorjani M, et al. Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater. 2008;15:88–99.

    Article  CAS  PubMed  Google Scholar 

  • Oesterhelt D, Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol. 1971;233:149–52.

    Article  CAS  PubMed  Google Scholar 

  • Organisciak DT, Vaughan DK. Retinal light damage: mechanisms and protection. Prog Retin Eye Res. 2010;29:113–34.

    Article  PubMed  Google Scholar 

  • Pan ZH, Ganjawala TH, Lu Q, et al. ChR2 mutants at L132 and T159 with improved operational light sensitivity for vision restoration. PLoS One. 2014;9:e98924.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phillips MJ, Wallace KA, Dickerson SJ, et al. Blood-derived human iPS cells generate optic vesicle-like structures with the capacity to form retinal laminae and develop synapses. Invest Ophthalmol Vis Sci. 2012;53:2007–19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Polosukhina A, Litt J, Tochitsky I, et al. Photochemical restoration of visual responses in blind mice. Neuron. 2012;75:271–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsden CM, Powner MB, Carr AJ, et al. Stem cells in retinal regeneration: past, present and future. Development. 2013;140:2576–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reh TA, Lamba D, Gust J. Directing human embryonic stem cells to a retinal fate. Methods Mol Biol. 2010;636:139–53.

    Article  CAS  PubMed  Google Scholar 

  • Reichman S, Terray A, Slembrouck A, et al. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc Natl Acad Sci U S A. 2014;111(23):8518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozanowska M, Jarvis-Evans J, Korytowski W, et al. Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. J Biol Chem. 1995;270:18825–30.

    Article  CAS  PubMed  Google Scholar 

  • Salero E, Blenkinsop TA, Corneo B, et al. Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives. Cell Stem Cell. 2012;10:88–95.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379:713–20.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385:509–16.

    Article  PubMed  Google Scholar 

  • Shirai H, Mandai M, Matsushita K, et al. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proc Natl Acad Sci U S A. 2016;113:E81–90.

    Article  CAS  PubMed  Google Scholar 

  • Simonelli F, Maguire AM, Testa F, et al. Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther. 2010;18:643–50.

    Article  CAS  PubMed  Google Scholar 

  • Song MJ, Bharti K. Looking into the future: using induced pluripotent stem cells to build two and three dimensional ocular tissue for cell therapy and disease modeling. Brain Res. 2016;1638:2–14.

    Article  CAS  PubMed  Google Scholar 

  • Song WK, Park KM, Kim HJ, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Rep. 2015;4:860–72.

    Article  CAS  Google Scholar 

  • Stanzel BV, Liu Z, Somboonthanakij S, et al. Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space. Stem Cell Rep. 2014;2:64–77.

    Article  CAS  Google Scholar 

  • Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85:845–81.

    Article  CAS  PubMed  Google Scholar 

  • Streilein JW, Ma N, Wenkel H, et al. Immunobiology and privilege of neuronal retina and pigment epithelium transplants. Vis Res. 2002;42:487–95.

    Article  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  • Taylor CJ, Bolton EM, Pocock S, et al. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet. 2005;366:2019–25.

    Article  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  CAS  PubMed  Google Scholar 

  • Tochitsky I, Polosukhina A, Degtyar VE, et al. Restoring visual function to blind mice with a photoswitch that exploits electrophysiological remodeling of retinal ganglion cells. Neuron. 2014;81:800–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomita H, Sugano E, Yawo H, et al. Restoration of visual response in aged dystrophic RCS rats using AAV-mediated channelopsin-2 gene transfer. Invest Ophthalmol Vis Sci. 2007;48:3821–6.

    Article  PubMed  Google Scholar 

  • Tomita H, Sugano E, Fukazawa Y, et al. Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the thy-1.2 promoter. PLoS One. 2009;4:e7679.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tomita H, Sugano E, Isago H, et al. Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exp Eye Res. 2010;90:429–36.

    Article  CAS  PubMed  Google Scholar 

  • Tomkins-Netzer O, Taylor SR, Bar A, et al. Treatment with repeat dexamethasone implants results in long-term disease control in eyes with noninfectious uveitis. Ophthalmology. 2014;121:1649–54.

    Article  PubMed  Google Scholar 

  • Tsai Y, Lu B, Bakondi B, et al. Human iPSC-derived neural progenitors preserve vision in an AMD-like model. Stem Cells. 2015;33:2537–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker BA, Park IH, Qi SD, et al. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS One. 2011;6:e18992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Lu B, Wood P, et al. Grafting of ARPE-19 and Schwann cells to the subretinal space in RCS rats. Invest Ophthalmol Vis Sci. 2005;46:2552–60.

    Article  PubMed  Google Scholar 

  • Wang S, Girman S, Lu B, et al. Long-term vision rescue by human neural progenitors in a rat model of photoreceptor degeneration. Invest Ophthalmol Vis Sci. 2008;49:3201–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • West EL, Gonzalez-Cordero A, Hippert C, et al. Defining the integration capacity of embryonic stem cell-derived photoreceptor precursors. Stem Cells. 2012;30:1424–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiley LA, Burnight ER, Songstad AE, et al. Patient-specific induced pluripotent stem cells (iPSCs) for the study and treatment of retinal degenerative diseases. Prog Retin Eye Res. 2015;44:15–35.

    Article  PubMed  Google Scholar 

  • Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2:e106–16.

    Article  PubMed  Google Scholar 

  • Wu J, Seregard S, Algvere PV. Photochemical damage of the retina. Surv Ophthalmol. 2006;51:461–81.

    Article  PubMed  Google Scholar 

  • van Wyk M, Pielecka-Fortuna J, Lowel S, et al. Restoring the ON switch in blind retinas: opto-mGluR6, a next-generation, cell-tailored optogenetic tool. PLoS Biol. 2015;13:e1002143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Ivanova E, Bi A, et al. Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration. J Neurosci. 2009;29:9186–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong X, Gutierrez C, Xue T, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun. 2014;5:4047.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Wang W, Liu Y, et al. Differentiation of induced pluripotent stem cells of swine into rod photoreceptors and their integration into the retina. Stem Cells. 2011;29:972–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olivier Goureau Ph.D. or Jens Duebel Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Goureau, O. et al. (2018). Retinal Prostheses: Other Therapies and Future Directions. In: Humayun, M., Olmos de Koo, L. (eds) Retinal Prosthesis. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-67260-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67260-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67258-8

  • Online ISBN: 978-3-319-67260-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics