Navigation Assistance for Individuals with Visual Impairments in Indoor Environments

  • Rupam KunduEmail author
  • Gopi Krishna Tummala
  • Prasun Sinha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10340)


Canes or service dogs in indoor environments are unable to provide spatial information to the Individuals with Visual Impairments (IVIs) to make them independent. An indoor navigation assistance system can provide information on the presence of any obstacles in their vicinity, the distance of separation and their direction of motion (in case of mobile objects) w.r.t the IVIs. In this paper, we attempt to address the above objective by designing a novel time-efficient algorithm where a smart-glass is employed to spot an obstacle (stationary or mobile) in indoor environment using the inbuilt camera and inertial sensors. The system is implemented and tested extensively in indoor settings.


  1. 1.
  2. 2.
    Duo 3D Camera.
  3. 3.
  4. 4.
  5. 5.
    Visual impairment and blindness.
  6. 6.
    Visual Impairment and Blindness statistics India.
  7. 7.
  8. 8.
    Al-Fahoum, A.S., Al-Hmoud, H.B., Al-Fraihat, A.A.: A smart infrared microcontroller-based blind guidance system. Act. Passive Electron. Compon. 2013 (2013)Google Scholar
  9. 9.
    Balakrishnan, G., Sainarayanan, G., Nagarajan, R., Yaacob, S.: A stereo image processing system for visually impaired. Int. J. Inf. Commun. Eng. 2(3), 136–145 (2006)Google Scholar
  10. 10.
    Ding, B., Yuan, H., Jiang, L., Zang, X.: The research on blind navigation system based on RFID. In: 2007 International Conference on Wireless Communications, Networking and Mobile Computing. pp. 2058–2061. IEEE (2007)Google Scholar
  11. 11.
    Fernandes, H., Costa, P., Filipe, V., Hadjileontiadis, L., Barroso, J.: Stereo vision in blind navigation assistance. In: World Automation Congress (WAC), pp. 1–6. IEEE (2010)Google Scholar
  12. 12.
    Ifukube, T., Sasaki, T., Peng, C.: A blind mobility aid modeled after echolocation of bats. IEEE Trans. Biomed. Eng. 38(5), 461–465 (1991)CrossRefGoogle Scholar
  13. 13.
    Khaleghi, B., Ahuja, S., Wu, Q.J.: A new miniaturized embedded stereo-vision system (MESVS-I). In: Canadian Conference on Computer and Robot Vision, CRV 2008, pp. 26–33. IEEE (2008)Google Scholar
  14. 14.
    Kumar, S., Gil, S., Katabi, D., Rus, D.: Accurate indoor localization with zero start-up cost. In: Proceedings of ACM MobiCom 2014, pp. 483–494 (2014)Google Scholar
  15. 15.
    Kuo, Y.S., Pannuto, P., Hsiao, K.J., Dutta, P.: Luxapose: indoor positioning with mobile phones and visible light. In: Proceedings of ACM MobiCom 2014, pp. 447–458 (2014)Google Scholar
  16. 16.
    Mohandas, V., Paily, R.: Stereo disparity estimation algorithm for blind assisting system. CSI Trans. ICT 1(1), 3–8 (2013)CrossRefGoogle Scholar
  17. 17.
    Shoval, S., Borenstein, J., Koren, Y.: The Navbelt-A computerized travel aid for the blind based on mobile robotics technology. IEEE Trans. Biomed. Eng. 45(11), 1376–1386 (1998)CrossRefGoogle Scholar
  18. 18.
    Shu, Y., Shin, K.G., He, T., Chen, J.: Last-mile navigation using smartphones. In: Proceedings of ACM MobiCom 2015, pp. 512–524 (2015)Google Scholar
  19. 19.
    Statt, N.: Microsoft’s HoloLens Explained: How it Works and Why it’s Different (2015)Google Scholar
  20. 20.
    Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  21. 21.
    Tummala, G.K., Kundu, R., Sinha, P., Ramnath, R.: Vision-track: vision based indoor tracking in anchor-free regions. In: Proceedings of the ACM HotWireless (2016)Google Scholar
  22. 22.
    Viswanathan, P., Boger, J., Hoey, J., Mihailidis, A.: A comparison of stereovision and infrared as sensors for an anti-collision powered wheelchair for older adults with cognitive impairments. In: Proceedings of the 2nd International Conference on Technology and Aging. Citeseer (2007)Google Scholar
  23. 23.
    Xiong, J., Jamieson, K.: ArrayTrack: a fine-grained indoor location system. In: Presented as Part of USENIX NSDI 2013, pp. 71–84 (2013)Google Scholar
  24. 24.
    Yang, L., Chen, Y., Li, X.Y., Xiao, C., Li, M., Liu, Y.: Tagoram: real-time tracking of mobile RFID tags to high precision using COTS devices. In: Proceedings of the ACM MobiCom 2014, pp. 237–248 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Rupam Kundu
    • 1
    Email author
  • Gopi Krishna Tummala
    • 1
  • Prasun Sinha
    • 1
  1. 1.Department of Computer Science and EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations