Designing 2-Hop Interference Aware Energy Efficient Routing (HIER) Protocol for Wireless Body Area Networks

  • Moumita Roy
  • Chandreyee ChowdhuryEmail author
  • Nauman Aslam
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10340)


With the evolution of wireless communication and advent of low power, miniaturized, intelligent computing devices, sensor network technology initiates the era of Wireless Body Area Network (WBAN) for medical applications. This new trend of healthcare empowers continuous supervision of vital physiological parameters under free living conditions. However, the potency of WBAN applications are subject to reliable data delivery. Inherent challenges of WBAN such as scarce energy resource, varying link quality, propensity of tissue damage necessitate optimal routing strategy to combat with hostilities. In addition, coexistence of multiple WBANs within proximity results in severe degradation of throughput as well. In this paper, a cost-based energy efficient routing protocol has been designed which ensures satisfactory performance without fostering thermal effect and adapts itself in adverse situations like intra BAN as well as inter BAN interference. The performance of the proposed algorithm is analyzed through comprehensive simulations. The protocol is analyzed for different mobility models signifying relative body movement due to posture change. The simulation results demonstrate that our proposed protocol out performs other protocols with respect to energy efficiency while maintaining a stable packet delivery ratio under interference.


WBAN Routing Intra BAN interference Inter BAN interference 


  1. 1.
    Cavallari, R., Martelli, F., Rosini, R., Buratti, C., Verdone, R.: A survey on wireless body area networks: technologies and design challenges. IEEE Commun. Surv. Tutorials 16(3), 1635–1657 (2014)CrossRefGoogle Scholar
  2. 2.
    Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., Jamalipour, A.: Wireless body area networks: a survey. IEEE Commun. Surv. Tutorials 16(3), 1658–1686 (2014)CrossRefGoogle Scholar
  3. 3.
    Bag, A., Bassiouni, M.A.: Energy efficient thermal aware routing algorithms for embedded biomedical sensor networks. In: IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS), pp. 604–609. IEEE (2006)Google Scholar
  4. 4.
    Tang, Q., Tummala, N., Gupta, S.K.S., Schwiebert, L.: TARA: Thermal-Aware Routing Algorithm for implanted sensor networks. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 206–217. Springer, Heidelberg (2005). doi: 10.1007/11502593_17 CrossRefGoogle Scholar
  5. 5.
    Bag, A., Bassiouni, M.A.: Hotspot preventing routing algorithm for delay-sensitive biomedical sensor networks. In: IEEE International Conference on Portable Information Devices, PORTABLE 2007, pp. 1–5. IEEE (2007)Google Scholar
  6. 6.
    Gupta, S.K., Lalwani, S., Prakash, Y., Elsharawy, E., Schwiebert, L.: Towards a propagation model for wireless biomedical applications. In: IEEE International Conference on Communications, ICC 2003, vol. 3, pp. 1993–1997. IEEE (2003)Google Scholar
  7. 7.
    Wu, G., Ren, J., Xia, F., Yao, L., Xu, Z., Shang, P.: A game theoretic approach for interuser interference reduction in body sensor networks. Int. J. Distrib. Sensor Netw. 7(1), 12–30 (2011)CrossRefGoogle Scholar
  8. 8.
    Sarra, E., Moungla, H., Benayoune, S., Mehaoua, A.: Coexistence improvement of Wearable Body Area Network (WBAN) in medical environment. In: IEEE International Conference on Communications (ICC), pp. 5694–5699. IEEE (2014)Google Scholar
  9. 9.
    Roy, M., Chowdhury, C., Aslam, N.: Designing an energy efficient WBAN routing protocol. In: COMSNETS. IEEE (2017)Google Scholar
  10. 10.
    Watteyne, T., Augé-Blum, I., Dohler, M., Barthel, D.: Anybody: a self-organization protocol for body area networks. In: Proceedings of the ICST 2nd International Conference on Body Area Networks, pp. 1–7. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2007)Google Scholar
  11. 11.
    Murthy, J.K., Rao, V.S.: Improved routing protocol for health care communications. Open J. Appl. Biosensor 2, 51–56 (2013)CrossRefGoogle Scholar
  12. 12.
    Culpepper, B.J., Dung, L., Moh, M.: Design and analysis of Hybrid Indirect Transmissions (HIT) for data gathering in wireless micro sensor networks. ACM SIGMOBILE Mob. Comput. Commun. Rev. 8(1), 61–83 (2004)CrossRefGoogle Scholar
  13. 13.
    Moh, M., Culpepper, B.J., Dung, L., Moh, T.S., Hamada, T., Su, C.F.: On data gathering protocols for in-body biomedical sensor networks. In: Global Telecommunications Conference, GLOBECOM 2005, vol. 5. IEEE (2005)Google Scholar
  14. 14.
    Braem, B., Latre, B., Moerman, I., Blondia, C., Demeester, P.: The wireless autonomous spanning tree protocol for multihop wireless body area networks. In: Third Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, pp. 1–8. IEEE (2006)Google Scholar
  15. 15.
    Ruzzelli, A.G., Jurdak, R., O’Hare, G.M., Van Der Stok, P.: Energy-efficient multi-hop medical sensor networking. In: Proceedings of the 1st ACM SIGMOBILE International Workshop on Systems and Networking Support for Healthcare and Assisted Living Environments, pp. 37–42. ACM (2007)Google Scholar
  16. 16.
    Liang, X., Balasingham, I.: A QoS-aware routing service framework for biomedical sensor networks. In: 4th International Symposium on Wireless Communication Systems, ISWCS 2007, pp. 342–345. IEEE (2007)Google Scholar
  17. 17.
    Latré, B., De Poorter, E., Moerman, I., Demeester, P.: MOFBAN: a lightweight modular framework for body area networks. In: Kuo, T.-W., Sha, E., Guo, M., Yang, L.T., Shao, Z. (eds.) EUC 2007. LNCS, vol. 4808, pp. 610–622. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-77092-3_53 CrossRefGoogle Scholar
  18. 18.
    Takahashi, D., Xiao, Y., Hu, F., Chen, J., Sun, Y.: Temperature-aware routing for telemedicine applications in embedded biomedical sensor networks. EURASIP J. Wirel. Commun. Networking 2008, 1–11 (2008)CrossRefGoogle Scholar
  19. 19.
    Bag, A., Bassiouni, M.A.: Routing algorithm for network of homogeneous and id-less biomedical sensor nodes (rain). In: Sensors Applications Symposium, SAS 2008, pp. 68–73. IEEE (2008)Google Scholar
  20. 20.
    Braem, B., Latré, B., Blondia, C., Moerman, I., Demeester, P.: Improving reliability in multi-hop body sensor networks. In: Second International Conference on Sensor Technologies and Applications, SENSORCOMM 2008, pp. 342–347. IEEE (2008)Google Scholar
  21. 21.
    Liang, X., Balasingham, I., Byun, S.S.: A reinforcement learning based routing protocol with QoS support for biomedical sensor networks. In: First International Symposium on Applied Sciences on Biomedical and Communication Technologies, ISABEL 2008, pp. 1–5. IEEE (2008)Google Scholar
  22. 22.
    Ahourai, F., Tabandeh, M., Jahed, M., Moradi, S.: A thermal-aware shortest hop routing algorithm for in vivo biomedical sensor networks. In: Sixth International Conference on Information Technology: New Generations, ITNG 2009, pp. 1612–1613. IEEE (2009)Google Scholar
  23. 23.
    Bag, A., Bassiouni, M.A.: Biocomm-a cross-layer Medium Access Control (MAC) and routing protocol co-design for biomedical sensor networks. Int. J. Parallel Emergent Distrib. Syst. 24(1), 85–103 (2009)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Quwaider, M., Biswas, S.: Probabilistic routing in on-body sensor networks with postural disconnections. In: Proceedings of the 7th ACM International Symposium on Mobility Management and Wireless Access, pp. 149–158. ACM (2009)Google Scholar
  25. 25.
    Quwaider, M., Biswas, S.: On-body packet routing algorithms for body sensor networks. In: First International Conference on Networks and Communications, NETCOM 2009, pp. 171–177. IEEE (2009)Google Scholar
  26. 26.
    Djenouri, D., Balasingham, I.: New QoS and geographical routing in wireless biomedical sensor networks. In: Sixth International Conference on Broadband Communications, Networks, and Systems, BROADNETS 2009, pp. 1–8. IEEE (2009)Google Scholar
  27. 27.
    de Francisco, R., Huang, L., Dolmans, G.: Coexistence of WBAN and WLAN in medical environments. In: IEEE 70th Vehicular Technology Conference Fall (VTC 2009), pp. 1–5. IEEE (2009)Google Scholar
  28. 28.
    Quwaider, M., Biswas, S.: DTN routing in body sensor networks with dynamic postural partitioning. Ad Hoc Netw. 8(8), 824–841 (2010)CrossRefGoogle Scholar
  29. 29.
    Chen, B., Varkey, J.P., Pompili, D., Li, J.K., Marsic, I.: Patient vital signs monitoring using wireless body area networks. In: Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference, pp. 1–2. IEEE (2010)Google Scholar
  30. 30.
    Maskooki, A., Soh, C.B., Gunawan, E., Low, K.S.: Opportunistic routing for body area network. In: Consumer Communications and Networking Conference (CCNC), pp. 237–241. IEEE (2011)Google Scholar
  31. 31.
    Razzaque, M.A., Hong, C.S., Lee, S.: Data-centric multiobjective QoS-aware routing protocol for body sensor networks. Sensors 11(1), 917–937 (2011)CrossRefGoogle Scholar
  32. 32.
    Liang, X., Li, X., Shen, Q., Lu, R., Lin, X., Shen, X., Zhuang, W.: Exploiting prediction to enable secure and reliable routing in wireless body area networks. In: Proceedings of INFOCOM 2012, pp. 388–396. IEEE (2012)Google Scholar
  33. 33.
    Movassaghi, S., Abolhasan, M., Lipman, J.: Energy Efficient Thermal and Power Aware (ETPA) routing in body area networks. In: 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 1108–1113. IEEE (2012)Google Scholar
  34. 34.
    Nadeem, Q., Javaid, N., Mohammad, S., Khan, M., Sarfraz, S., Gull, M.: Simple: stable increased-throughput multi-hop protocol for link efficiency in wireless body area networks. In: Eighth International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA), pp. 221–226. IEEE (2013)Google Scholar
  35. 35.
    Chen, Y.M., Peng, Y.: Energy efficient fuzzy routing protocol in wireless body area networks. Int. J. Eng. 4(1), 59–63 (2013)Google Scholar
  36. 36.
    Murthy, J.K., Thimmappa, P., Sambasiva Rao, V.: Investigations on the routing protocols for wireless body area networks. In: Aswatha Kumar, M., Selvarani, R., Suresh Kumar, T.V. (eds.) Proceedings of International Conference on Advances in Computing. AISC, vol. 174, pp. 483–490. Springer, New Delhi (2013). doi: 10.1007/978-81-322-0740-5_59 CrossRefGoogle Scholar
  37. 37.
    Monowar, M.M., Hassan, M.M., Bajaber, F., Hamid, M.A., Alamri, A.: Thermal-aware multiconstrained intrabody QoS routing for wireless body area networks. Int. J. Distrib. Sensor Networks 10(3), 1–14 (2014)CrossRefGoogle Scholar
  38. 38.
    Movassaghi, S., Abolhasan, M., Smith, D., Jamalipour, A.: AIM: Adaptive Internetwork Interference mitigation amongst co-existing wireless body area networks. In: Global Communications Conference (GLOBECOM), pp. 2460–2465. IEEE (2014)Google Scholar
  39. 39.
    Almashaqbeh, G., Hayajneh, T., Vasilakos, A.V.: A cloud-based interference-aware remote health monitoring system for non-hospitalized patients. In: 2014 IEEE Global Communications Conference (GLOBECOM), pp. 2436–2441. IEEE (2014)Google Scholar
  40. 40.
    Elhadj, H.B., Elias, J., Chaari, L., Kamoun, L.: A priority based cross layer routing protocol for healthcare applications. Ad Hoc Netw. 42, 1–18 (2016)CrossRefGoogle Scholar
  41. 41.
    Ahmed, S., Javaid, N., Yousaf, S., Ahmad, A., Sandhu, M.M., Imran, M., Khan, Z.A., Alrajeh, N.: Co-LAEEBA: cooperative link aware and energy efficient protocol for wireless body area networks. Comput. Hum. Behav. 51, 1205–1215 (2015)CrossRefGoogle Scholar
  42. 42.
    Javaid, N., Ahmad, A., Nadeem, Q., Imran, M., Haider, N.: iM-SIMPLE: improved stable increased-throughput multi-hop link efficient routing protocol for wireless body area networks. Comput. Hum. Behav. 51, 1003–1011 (2015)CrossRefGoogle Scholar
  43. 43.
    Sahndhu, M.M., Javaid, N., Imran, M., Guizani, M., Khan, Z.A., Qasim, U.: BEC: a novel routing protocol for balanced energy consumption in wireless body area networks. In: Wireless Communications and Mobile Computing Conference (IWCMC), pp. 653–658. IEEE (2015)Google Scholar
  44. 44.
    Ayatollahitafti, V., Ngadi, M.A., bin Mohamad Sharif, J., Abdullahi, M.: An efficient next hop selection algorithm for multi-hop body area networks. PloS One 11(1), 1–14 (2016)CrossRefGoogle Scholar
  45. 45.
  46. 46.
    Lu, Y.M., Wong, V.W.S.: An energy-efficient multipath routing protocol for wireless sensor networks. Int. J. Commun. Syst. 20(7), 747–766 (2007)CrossRefGoogle Scholar
  47. 47.
    Bettstetter, C.: Smooth is better than sharp: a random mobility model for simulation of wireless networks. In: Proceedings of the 4th ACM International Workshop on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pp. 19–27. ACM (2001)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Moumita Roy
    • 1
  • Chandreyee Chowdhury
    • 1
    Email author
  • Nauman Aslam
    • 2
  1. 1.Department of Computer Science and EngineeringJadavpur UniversityKolkataIndia
  2. 2.Department of Computer and Information SciencesNorthumbria UniversityNewcastle upon TyneUK

Personalised recommendations